
Filename encoding
and case-insensitive filesystems

Gabriel Krisman Bertazi <krisman@collabora.com>

2

Why an encoding-aware FS?
● Traditional UNIX-like approach: Opaque byte sequences.

● Because the other kids are doing it.

● Real world use cases:

– Porting from the Windows world.

– Android exposes case-insensitive tree.

– Better support for exported filesystems.

● User space hacks are slow and racy.

3

Why an encoding-aware FS? (2)
● File uniqueness: Doesn’t translate well to real-world languages:

[krisman@dilma]$ ls -li toráx
15631222 -rw-r--r-- 1 root root 0 Nov 1 01:47 coração
15631218 -rw-r--r-- 1 root root 0 Nov 1 01:46 coração
15631217 -rw-r--r-- 1 root root 0 Nov 1 01:46 coração
15631215 -rw-r--r-- 1 root root 0 Nov 1 01:46 coração

● Lack of normalization is confusing for non-english speakers.

● What is the definition of Case without an encoding?

4

Dealing with real world languages in the
kernel

● NLS - Native Language Support

5

NLS Limitations
● Dealing with invalid character sequences.

● Dealing with multi-byte sequences/code points.

– i.e.: to_upper, to_lower return a single byte char.

● Dealing with encoding evolution over time: stability.

– i.e.: Unicode: Folding of Unmapped code-points isn’t stable.

● Missing Normalization and partially implemented casefolding.

– Casefolding is almost ASCII only.

●

●

6

NLS improvements
● Encoding versioning

– load_nls_version (“utf-8”, “10.0.0”, flags);

● Filesystem define NLS behavior:

– Normalization Type (utf-8: NF(,K)(C,D))

– Casefold Type (utf-8: CF; ascii: toupper, tolower)

– Permissiveness mode: Validate, ignore or reject invalid

sequences

7

NLS improvements (2)
● Support Multi-byte code-points

– New API for comparisons, normalization and casefold

● Support for UTF-8 NFKD normalization and Full-Casefold, based

on a decoding trie. Extendable for other Normalization types.

● Backward compatible with existing NLS tables and their users.

8

New NLS operations important to
Filesystems

● nls_load_version()

● nls_validate() - string valid within the charset?

● nls_strncmp() - Consider equivalent sequences

● nls_strncasecmp() -

● nls_normalize() - Get the normalization of the string

● nls_casefold() - Get the casefold of the string

9

Making Ext4 encoding-aware
(and case-unaware)

● Patches for the kernel, e2fsprogs and xfstests are under
review!
– e2fsprogs

● https://marc.info/?l=linux-ext4&m=153963794728040&w=2

– linux:
● https://www.spinics.net/lists/linux-ext4/msg62602.html

10

Encoding awareness

● Implemented as an Incompatible Feature.

● Stored on the superblock. Applies for the entire FS.

● Store the encoding type, version and flags.

● Configurable only at mkfs time for now.

– Disk conversion could require rebuilding htree hashes.

● Name-preserving implementation.

● Implementation doesn’t touch VFS.

11

Dentry cache details

● Try to make good use of the dentry cache

● Equivalent name sequences don’t create multiple dentries. One

per file entry.

– d_hash() and d_compare() become encoding-aware

● Negative dentries are not cached

– Requires careful invalidation during later creation

12

Case-insensitive support

● Requires Encoding support. Otherwise, Casefold == ?

● Per-directory inode attribute

– On empty directories. Avoid name collisions

– Finer-grained control is more suitable for users

● Trivial to implement:

– Can be seen as a special case of the encoding support

13

Limitations / Issues

● directory encryption not supported

– lookup based on a hash of the name. Impossible to calculate

the same hash starting from an equivalent sequence.

● Proposal: Store the file using the Hash of the normalization

of the name. Does it work?

– fscrypt has its own ->d_ops

● Make fscrypt aware of encodings

14

Limitations / Open Issues

● Default setting (at mkfs) for dealing with invalid sequences

– Proposal: Make it permissive: Consider broken sequences as

opaque byte sequences (falls back to previous behavior)

● Userspace breakage due to normalization/casefolding of names?

● Any other?

15

Code:

● Linux:
– https://gitlab.collabora.com/krisman/linux -b ext4-ci-directory_v3

● e2fsprogs

– https://gitlab.collabora.com/krisman/e2fsprogs -b encoding-feature-merge

● xfstests

– https://gitlab.collabora.com/krisman/xfstests -b encoding

● Patches on linux-ext4.

16

Acknowledgments:
● Thank you for the reference code, guidance, and/or code reviews

– Olaf Weber, Ben Myers, Ted Ts’o, Darrick Wong, folks at LSF/MM, Collabora,

and those guys at Valve!:)

17

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

