
Beyond the latency: New metrics
for the real-time kernel

Daniel Bristot de Oliveira

2

In the beginning

In the begin a program was only a logical sequence,
Then gosh said: we can’t wait forever, we need to put time on this,

Since then we have two problems:
The logical correctness, and the timing correctness.

The systems defined as a set of tasks
Each task is a set of variables that defines its timing behavior, e.g.,

Then, they try to define/develop a scheduler in such way that,
for each task i in :

the response time of < Di

3

In theory...
τ

τi={P ,C , D ,B , J }

τ
τi

4

For task level fixed priority scheduler:

Ri=W i+J i

W i=C i+Bi+∑ j∈hp(i) ⌈ W i+J j

P j
⌉C j

∀ task i∈τ :

is schedulable⇔∀ task i∈τ∣R i<Di

5

New metrics for the PREEMPT RT

Bi

ExecutionB

 Ri

W i

Ci

 J i

Activation Start Finish

I

 I i

Blocking Interference Next
Activation

 Pi

6

PREEMPT_RT Timing correctness
● The preempt RT main metric is the latency

● It is good, per carità...
● But it is very simplistic, if compared to response time.
● Latency is not even clearly defined

● Kernel is seeing as a black box
● There is no guarantee that the latency that took place now, will take

place in the future (reproducibility/repeatability).
● It very hard, if not impossible, to give any guarantee in those numbers

● We tried to use Extreme Value Analysis – it does not fit in the
method.

7

PREEMPT_RT Timing correctness
● User applications also depends on other characteristics of the kernel:

● Locking
● Dependence of other tasks
● Interference of other tasks (and IRQs)

8

New metrics for the PREEMPT RT
● How can we improve the situation for Linux?
● What are tasks on Linux?
● What are the other metrics?

● Execution time of task?
● Blocking time? (SCHED_STATS)

● Chain of locks that a task depends
● Activation delay? (WAKEUP_DELAY)

● Atomic context delay?
● Dependency among tasks?

9

New metrics for the PREEMPT RT

B i

SC i

Execution B

Ri

W i

CiJ i

Sched
wakeup

Context
switch in

Context
switch out
state=S

Sched

Context
switch out
state=D

Context
switch in

Sched

Sched Sched

What will I do, e.g., Composition of Latency

11

Rescheduling delay
● [need_resched...sched_return]

● Case one: in the schedule

12

Rescheduling delay
● [need_resched...sched_return]

● Case two: calling the scheduler
● Consider also that we have interference from interrupts

13

Thoughts?
● It is not reasonable doing this only in user-space

● Too much data
● Should I do a trace-plugin?
● Use eBPF?
● Do something in kernel (lock stat like?)

	Slide 1
	What is next?
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

