
Symbol Namespaces
Martijn Coenen <maco@android.com>

The problem

● There are >30000 EXPORT_SYMBOL(_GPL etc) symbols

○ All in a global namespace, visible to all modules

● Hard to manage the export surface

○ Should driver X even use these symbols?

○ Can be hard to catch in code review

● Hard to reason about the export surface

○ What subsystem does this symbol belong to?

How it affects Android

● We’re moving to a model with a single generic arch image

○ We’ll load many device-specific modules, from different parties

● No stable API means potential breakages

● We want to significantly reduce the chances of such breakages

Different categories of exported symbols

● Symbols actually meant for drivers (but only for some?)

● Symbols exported only because core functionality is split over multiple
modules

● Symbols really meant only for internal (in-tree) use

Symbol namespaces

● Goal 1: Make the API surface more clear

○ Allow to differentiate different classes of exports

● Goal 2: Reduce the *global* API surface

Reducing the size of the exported API

What is the exported API?

// Regular C internal linkage (not visible to LKMs)
static void usb_stor_scan_dwork(struct work_struct *work);

// Regular C global linkage (not visible to LKMs!)
void usb_stor_disconnect(struct usb_interface *intf);

Exporting a symbol for LKM use

void usb_stor_disconnect(struct usb_interface *intf);

// Export for LKM use as well

EXPORT_SYMBOL(usb_stor_disconnect);

The exported API

Global Symbols

Exported
Symbols

Exported API

Built-in + modules

Built-in code only

Visible by:

Exporting a symbol to a namespace

void usb_stor_disconnect(struct usb_interface *intf);

// Only available for LKMs importing USB_STORAGE ns

EXPORT_SYMBOL_NS(usb_stor_disconnect, USB_STORAGE);

Importing a namespace to a module

MODULE_IMPORT_NS(USB_STORAGE);

● # of default exported symbols is smaller

● APIs are more cleanly defined

In the resulting API...

Global Symbols

Exported
symbolsUSB

Global Symbols

Exported
Symbols

Built-in + modules

Built-in code only

Visible by:

Built-in + modules importing USB_STORAGE

Automation

● Requires subsystem maintainer to think about where a symbol belongs

● Requires drivers using subsystems to explicitly import them

● Patchset contains a script that calculates dependendies and auto-adds
import statements

Upstream status

● Patchset is really small (~300 LOC)

● v1 in series sent in July

● High-level feedback so far:

○ Auto-export to namespace based on KBUILD_MODNAME

○ Auto-import namespace through Makefile

● v2 next week :-)

Discussion

Symbol Namespace Implementation

Regular exported symbols

● Each symbol is represented by struct kernel_symbol

○ Placed in special __ksymtab sections

● Symbol name is ‘__ksymtab_’ + symbol name

○ __ksymtab_usb_stor_suspend

● modpost and the kernel module loader use these sections

○ modpost verifies unresolved symbols are exported by others

○ Kernel loader resolves symbols at runtime and fixes up

Symbol namespaces implementation

● Only ~300 LOC

● Add namespace member to struct kernel_symbol

● Also encode namespace in symbol name with ‘.’ separator

○ __ksymtab_usb_stor_suspend.USB_STORAGE

● Place imports in a __knsimports section

● Modpost warns for use of ‘unimported symbols’ at build time

● Kernel loader warns at runtime

Upstream feedback

● Feedback so far:

○ Use modinfo tag instead of section for imports

○ Auto-export to namespace based on KBUILD_MODNAME

○ Auto-import namespace through Makefile

Discussion

Points for discussion

● Warning vs errors

● Granularity of exports

● Memory usage

THANK YOU

