
Confidential + ProprietaryConfidential + Proprietary

Securely migrating untrusted workloads with CRIU
Linux Plumbers Conference 2018

Radoslaw Burny
rburny@google.com

2018-11-15

Confidential + Proprietary

Borg isolation

Borg runs multiple tasks on the same machine,
managed by a “Borglet” daemon.

● tasks are isolated by containers
○ cgroups + namespaces + chroot

● tasks are considered untrusted
○ must be isolated from each other

● tasks are not privileged
○ i.e. no Linux capabilities

Where does CRIU fit in the picture?

Container 1

Borglet
[root]

Container 2

WebServer
[search]

MapReduce
[youtube]

Container 3

TensorFlow
[deepmind]

Confidential + Proprietary

CRIU performs complex work on behalf of tasks...

● uses breadth of kernel interfaces
● requires elevated capabilities

It’s easiest to run CRIU as root.

In theory, it’s safe - CRIU drops capabilities during restore,
before returning control to the user code.

Running CRIU

Borglet
[root]

Container

MapReduce
[user]

CRIU
[root]

Confidential + Proprietary

Running CRIU securely

CRIU performs complex work on behalf of tasks...

● a malicious task could exploit it
● … and gain its capabilities

We need to run CRIU as the task’s user, with minimal caps.

Bonus: non-privileged apps can also use CRIU
(example: build system restores prewarmed Java compiler).

Borglet
[root]

Container

MapReduce
[user]

CRIU
[user]

Confidential + Proprietary

Run tasks (and CRIU) in userns without root mapping.

● capabilities in userns don’t map to global ns
● if user exploits a bug and gains control of userns

 -> they still have no access to global root

Seems like we were not the first ones to try it:

Step 1- user namespace without root
init userns

task’s userns

root youtube search

youtube

Confidential + Proprietary

Step 2 - capability reduction

Run CRIU with task’s user’s credentials. Minimize the number of additional
Linux capabilities by avoiding privileged operations:

● don’t migrate cgroups & namespaces (Borglet recreates them)

● check if the setting is already at a desired value, avoid redoing it
○ chroot, setgroups, chown, /proc/self/loginuid, ...

● disable privileged parts of socket migration code
○ we currently break & re-establish network connections anyway
○ will eventually need to revisit this to allow non-disruptive migration

Confidential + Proprietary

We’re down to two functionalities requiring a capability.
Both occur on restore and require local CAP_SYS_ADMIN:

1. writing to /sys/kernel/ns_last_pid
○ workaround: delegate to privileged helper process

2. changing /proc/$PID/exe via prctl(PR_SET_MM, PR_SET_MM_MAP, …)
○ no known workaround

Both interfaces originated from CRIU project.
Are the strict capability requirements really necessary?

Capability reduction - results

Confidential + Proprietary

Controlled user namespaces

User namespaces can be used to exploit bugs:

● create user namespace, get all caps, exploit!
● “solution”: limit the ability to create userns

Mahesh Bandewar proposed “controlled” userns:

● only whitelisted capabilities can be gained
● children namespaces also become “controlled”
● thus, a process running in a “controlled” userns

can never gain “dangerous” capabilities

Capability reduction is necessary to run in a “controlled” userns.

init userns

Borglet [root]

controlled userns
CAP_SYS_ADMIN
CAP_NET_RAW

CAP_NET_ADMIN

MapReduce
[user]

https://lwn.net/Articles/742617/

Confidential + Proprietary

Thank you!
Our questions:

● is the community interested in running CRIU unprivileged?

● can we reduce cap requirements for ns_last_pid and PR_SET_MM_MAP?

