
Task migration at Google using CRIU
Linux Plumbers Conference 2018

Andy Tucker
agtucker@google.com
November 13, 2018

mailto:agtucker@google.com


Basics

Google's internal cloud managed by "Borg" resource management system
● Heavy resource overcommit for high utilization

Applications submitted as jobs 
● Job config defines priority, requirements, number of replicas

Each replica is a task that can run on a different machine

Tasks are preemptable - high priority tasks can preempt lower ones
● Preemption causes task to restart on new machine



Borg Architecture

BorgmasterJob config

Machines
Borglet Borglet Borglet Borglet

task

task

task

task

task

task

task task

task task

Scheduler



Why migrate?

Lower priority tasks experience frequent preemptions
● Also evictions for machine shutdown (kernel upgrades, hardware maintenance)
● All in-memory computation lost on a task restart
● Depending on job, rebuilding state may be expensive

Migration allows memory/process state to be preserved
● Avoids restart cost
● Allow jobs to run at "natural" priority
● No need for application-specific checkpointing



Prerequisites

Tasks have few machine dependencies
● Running inside namespaces (pid, network, mount, UTS)
● No local disk
● Avoid use of hostname/IP (mostly...)

Clients are tolerant of network failures
● Designed for resiliency
● Most use gRPC/Stubby - automatic retry on connection failure
● IP+port lookup based on task ID (BNS)



Task migration

Source Destination

Colossus

3. dump 6. re
store

Borgmaster

2. S
topTask 5. StartTask

Scheduler

4. Reschedule task

Borglet

task

CRIU

Borglet

task

CRIU

1. Evict task



Dump

Colossus

Borglet

criu dump

Migrator

container
Page Server

Local files 
(tmpfs) 

File Checkpointer

tar and encrypt

task Google
CRIU



Restore

Colossus

Borglet

criu restore

Migrator

container

Page Server

Local files 
(tmpfs) 

File Checkpointer
decrypt and untar

task Google
CRIU



Challenges

● Performance
● Time handling
● Security (separate talk coming later)



Performance

Staging in local disk or tmpfs is slow - moved to streaming design
● Also avoids 2x memory requirements

Scaling issues for tasks with large numbers (~1000s) of threads and sockets
● wait4/waitpid traversing linked list of threads
● Walking lists of fds on restore (fixed in HEAD)
● Small socket hash tables

Generally 1-2 minute blackout time for most tasks

Live migration would provide further improvements (overlap dump and restore)



Performance data

Outliers are very large (~100 GB, 100s of threads, 1000s of file descriptors)



Time handling

TSC (x86 TimeStamp Counter) values not comparable across machines
● Can go "backwards" (non-monotonic) or jump forward
● Similar for CLOCK_MONOTONIC and CLOCK_BOOTTIME

Compensating with offset applied by low level libraries
● Current (virtual) TSC, etc. sent as metadata from source to destination
● Used to compute offset after migration, applied in wrapper library
● Migrations limited to CPUs of same TSC frequency (or could scale...)

Time namespace (kernel support) would be valuable (especially if extended to TSC)



Conclusions

Migration working well within Google, solving real problems

Performance within reasonable bounds (but working on improvements)

CRIU is stable and working well in production environments


