- redhat

How can we catch problems that
can break the PREEMPT_RT
preemption model?

Daniel Bristot de Oliveira

What is the main preempt rt feature?

e A preemption model in the kernel
e Qur preemption model tries to make the kernel as preemptive as
possible, by:

— The preemption is enabled by default
* Disabled on demand

— Code that are specific for us
* Enabled with #ifdeffery

— We have the same lock assumptions, but different lock “positions”

Q. redhat.

What is the main preempt rt feature?

e How do we catch problems nowadays?
— Sched while in atomic?
- Lockdep

— We have some fragments of a check

e But we do not have a specific model check

- What should we do?

Q. redhat.

What do | plan to do

e A formal model checker for the PREEMPT_RT
e |tis basedinthe modell presented

— Although it is for single core, it works for SMP as well

* |just need to add migrate_disable/spin_locks to it

Q. redhat.

Calling scheduler

|

~u~pemily

schedule_entry
sched_switch preempt

schedule_entry
i;:, sched)wﬁ:ﬂjn
- L _need_

i
- sched_set_state_runnable

sched wakmg /

2 sleepable

/\

schedule_entry
sched_switch_suspend

<2y

N/

schedule_entry
sched_waking
sched_negq_resched

sched_switch_in

preemption_ qecy\

sched Wakmg

e]

o

schedule_entry
sched_. swilch preempt

A

schedule_entry

\

preemption_runnable

o/

preemption_to_runnable

__/

Q. redhat.

[N

Reference tracing:

ktimersoftd/0 8 [000] 784.425631: sched:sched_switch: ktimersoftd/0:8 [120] R ==> kworker/0:2:728 [120]
kworker/0:2 728 [000] 784.425926: sched:sched_set_state: sleepable

kworker/0:2 728 [000] 784.425932: sched:sched_waking: comm=kworker/0:1 pid=724 prio=120 target_cpu=000
kworker/0:2 728 [000] 784.425936: sched:set_need_resched: comm=kworker/0:2 pid=728
kworker/0:2 728 [000] 784.425941: sched:sched_entry: at preempt_schedule_common
kworker/0:2 728 [000] 784.425945: sched:sched_switch: kworker/0:2:728 [120] R ==> kworker/0:1:724 [120]

irq/14-ata_piix 86 [000] 784.426515: sched:sched_waking: comm=kworker/0:2 pid=728 prio=120 target_cpu=000

kworker/0:1 724 [000] 784.426610: sched:sched_switch: kworker/0:1:724 [120] t ==> kworker/0:2:728 [120]
kworker/0:2 728 [000] 784.426616: sched:sched_entry: at schedule
kworker/0:2 728 [000] 784.426619: sched:sched_switch: kworker/0:2:728 [120] R ==> kworker/0:2:728 [120]

QOO ~NOUWNERE

Q. redhat.

Calling scheduler

Event State

sched_switch_in running
sched_set_state_sleepable sleepable
sched_need_resched preemption_sleepable

schedule_entry
sched_switch_preempt

preemption_sleepable
preemption_sleepable

sched_waking preemption_to_runnable
sched_switch_in running
schedule_entry vain! ki g g
i “h‘d‘wtkgb'x 1 \
schedule_entry - epr) =

sched_waking 1
sched_need_resched

/“\

it sched_set_state_sleepable [)\ /

e schedule_entry
sched switch_suspend

= \ =
schedule entry e / \”

e = \ /

_ sched_switch_i m
sched_switch_in

sched %wnch in

~—__ sched_ need i [

7
7

schedule _entry
sched swntc_h_preempt

/ \

o schedule_entry
sched_swi}c}}_preempt
_sleepable = S

\ %ched wakmg / \
\ / e \

schedule emry

sched_switch_in | o : |

\ /\ i
— sched_ switch _preempt \"'\'—»,,,,,,SChe({j‘E?firieiched = %chedule emry

preemption_runnable

\/

\/

Q. redhat.

Logical correctness for task model
e Example of patch catch’ed with the model

— [PATCH RT] sched/core: Avoid__schedule() being called twice, the second in vain

e | am doing the model verification in user-space now:

— Using perf + (sorry, peterz) tracepoints

It works, but requires a lot of memory/data transfer:
* Single core, 30 seconds = 2.5 GB of data

* Wedon’t need all the data, only from a safe state to the problem.

It performs well, because the automata verification is O(1).

But still, the amount of data is massive.

Q. redhat.

Should | move it to kernel?
e Think of a lockdep for PREEMPT_RT model:

— If an unexpected event takes place, we explain why
— Enabled in compilation time

— Running in kernel would avoid copying data/keeping data after reaching a
safe state

e This is helpful for safe critical systems
- CI
— We might face more problems with merge with the non-rt

— It observes more than just latency

Q. redhat.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

