
How can we catch problems that
can break the PREEMPT_RT

preemption model?

Daniel Bristot de Oliveira

● A preemption model in the kernel
● Our preemption model tries to make the kernel as preemptive as

possible, by:
– The preemption is enabled by default

● Disabled on demand
– Code that are specific for us

● Enabled with #ifdeffery
– We have the same lock assumptions, but different lock “positions”

2

What is the main preempt rt feature?

● How do we catch problems nowadays?
– Sched while in atomic?
– Lockdep
– We have some fragments of a check

● But we do not have a specific model check
– What should we do?

3

What is the main preempt rt feature?

● A formal model checker for the PREEMPT_RT
● It is based in the model I presented

– Although it is for single core, it works for SMP as well
● I just need to add migrate_disable/spin_locks to it

4

What do I plan to do

5

Calling scheduler

6

Reference tracing:

 1: ktimersoftd/0 8 [000] 784.425631: sched:sched_switch: ktimersoftd/0:8 [120] R ==> kworker/0:2:728 [120]
 2: kworker/0:2 728 [000] 784.425926: sched:sched_set_state: sleepable
 3: kworker/0:2 728 [000] 784.425932: sched:sched_waking: comm=kworker/0:1 pid=724 prio=120 target_cpu=000
 4: kworker/0:2 728 [000] 784.425936: sched:set_need_resched: comm=kworker/0:2 pid=728
 5: kworker/0:2 728 [000] 784.425941: sched:sched_entry: at preempt_schedule_common
 6: kworker/0:2 728 [000] 784.425945: sched:sched_switch: kworker/0:2:728 [120] R ==> kworker/0:1:724 [120]
 7: irq/14-ata_piix 86 [000] 784.426515: sched:sched_waking: comm=kworker/0:2 pid=728 prio=120 target_cpu=000
 8: kworker/0:1 724 [000] 784.426610: sched:sched_switch: kworker/0:1:724 [120] t ==> kworker/0:2:728 [120]
 9: kworker/0:2 728 [000] 784.426616: sched:sched_entry: at schedule
10: kworker/0:2 728 [000] 784.426619: sched:sched_switch: kworker/0:2:728 [120] R ==> kworker/0:2:728 [120]

7

Calling scheduler
Event State
sched_switch_in running
sched_set_state_sleepable sleepable
sched_need_resched preemption_sleepable
schedule_entry preemption_sleepable
sched_switch_preempt preemption_sleepable
sched_waking preemption_to_runnable
sched_switch_in running
schedule_entry vain!

● Example of patch catch’ed with the model
– [PATCH RT] sched/core: Avoid__schedule() being called twice, the second in vain

● I am doing the model verification in user-space now:
– Using perf + (sorry, peterz) tracepoints
– It works, but requires a lot of memory/data transfer:

● Single core, 30 seconds = 2.5 GB of data
● We don’t need all the data, only from a safe state to the problem.

– It performs well, because the automata verification is O(1).
– But still, the amount of data is massive.

8

Logical correctness for task model

● Think of a lockdep for PREEMPT_RT model:
– If an unexpected event takes place, we explain why
– Enabled in compilation time
– Running in kernel would avoid copying data/keeping data after reaching a

safe state

● This is helpful for safe critical systems
– CI
– We might face more problems with merge with the non-rt
– It observes more than just latency

9

Should I move it to kernel?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

