
Workqueues and cpu
hotplug

冯博群 Boqun Feng
boqun.feng@gmail.com

Background story
● One day Paul wanted to parallelize expedited grace-period initialization

○ commit 25f3d7effab63

...
rcu_for_each_leaf_node(rnp) {

...
INIT_WOKR(&rnp->rew.rew_work, ..);
queue_work_on(rnp->grplo, rcu_par_gp_wq, &rnp->rew.rew_work);
rnp->exp_need_flush = true;

}

rcu_for_each_leaf_node(rnp)
if (rnp->exp_need_flush)

flush_work(&rnp->rew.rew_work);

Background story (cont.)

> BUG: workqueue lockup - pool cpus=0 node=0 flags=0x4 nice=0 stuck for 59s!
> Showing busy workqueues and worker pools:
> workqueue rcu_gp: flags=0x8
> pwq 22: cpus=11 node=0 flags=0x0 nice=0 active=1/256
> in-flight: 28:wait_rcu_exp_gp
> workqueue rcu_par_gp: flags=0x8
> pwq 0: cpus=0 node=0 flags=0x4 nice=0 active=1/256

● But we hit this:

flags=0x4 means POOL_DISASSOCIATED, which means pwq 0 is offline

What happen?
/**
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @work: work to queue
 *
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
 *
 * Return: %false if @work was already on a queue, %true otherwise.
 */
bool queue_work_on(int cpu, struct workqueue_struct *wq,

 struct work_struct *work)

What happens? (cont.)
rnp->grplo is already offlined when we try to queue the work

...
rcu_for_each_leaf_node(rnp) {

...
INIT_WOKR(&rnp->rew.rew_work, ..);
queue_work_on(rnp->grplo, rcu_par_gp_wq, &rnp->rew.rew_work);
rnp->exp_need_flush = true;

}

rcu_for_each_leaf_node(rnp)
if (rnp->exp_need_flush)

flush_work(&rnp->rew.rew_work);

Solution
...
rcu_for_each_leaf_node(rnp) {

...
INIT_WOKR(&rnp->rew.rew_work, ..);
preempt_disable();
cpu = cpumask_next(rnp->grplo - 1, cpu_online_mask);
/* If all offline, queue the work on an unbound CPU. */
if (unlikely(cpu > rnp->grphi))

cpu = WORK_CPU_UNBOUND;
queue_work_on(cpu, rcu_par_gp_wq, &rnp->rew.rew_work);
preempt_enable();
rnp->exp_need_flush = true;

}

rcu_for_each_leaf_node(rnp)
if (rnp->exp_need_flush)

flush_work(&rnp->rew.rew_work);

Better solution?
● Limitation of current workqueue API

○ per-cpu workqueue allow to run work items in parallel, but need to deal with cpu hotplug when
queue_work_on().

○ unbound workqueue only provide the parallel level the same as the numbers of NUMA node.

● Ideally we want the ability to:
○ Run N (N > # of NUMA nodes) work items in parallel or,
○ For each fine-grained group of CPUs (smaller than a NUMA node, e.g. rcu_node), run a work

item in parallel
○ and need no worry for racing with cpu hotplug.

Possible solution #1
● Allow to queue a work item on a offline cpu in per-cpu workqueue

○ having some mechanism to steal/grab work item from a worker pool if the cpu is offlined.

● Pros
○ No need to introduce another workqueue API

● Cons
○ Increase the complexity of work item processing
○ Will it work well with load balance?

Possible solution #2
● Generalize numa_pwq to support more fine-grained node.

○ Modify alloc_workqueue() to allocate pwqs more than # of NUMA.
○ each workqueue has its own cpu_to_node()
○ a slightly different wq_calc_node_cpumask()
○ also need to handle cpu hotplug differently

Possible solution #3
● Solve this in another layer higher than workqueue

