UtilClamp

Status update on Utilization Clamping support
for FAIR and RT tasks — —

800

Patrick Bellasti

<patrick.bellasi@arm.com>

© 2018 Arm Limited

Introduction
What is the problem on hand?

Feed context aware information about tasks requirements
from System Management Software (SMS) to kernel-space
to improve existing policies for OPPs selections and TASKs placement

“BACKGROUND APPS” “TOP APP”

poo s N - The utilization is already used in many decisions
e = by schedutil to drive OPP selection

. = by the (EA)Scheduler for task placement

"o, Android, Chrome0S, oo, We are looking for a per-task{group} API
Monitoring = clamp the utilization of each task
Constraints = aggregate the clamped utilization of

OPP and Task Placement biasing RU N NAB LE tasks on eaCh CPU

2 © 2018 Arm Limited arm

Proposal
UtilClamp v5" in a Nutshell

uclamp_group_get/put()

— procfs::sched_sched_uclamp_util_{min,max}

https://goo.gl/ali7VH [1]

util_avg

uclamp_cpu_get/put()
E
uclamp_map i PER_CPU(uclamp_cpu)
|
I
UCLAMP_MIN UCLAMP_MAX | UCLAMP_MIN UCLAMP_MAX
tont i | <<rq_lock>> <<rq_lock>>

I

value, se_count value, se_count g value, tasks value, tasks
<}
0' .

value, se_count value, se_count g value, tasks value, tasks
2
0‘
o

value, se_count value, se_count § value, tasks value, tasks
Q
2

—— cgroup::cpu_util_*_write() slow path
syscall::sched_setattr() userspace APIs
I task_struct
S
s
< | clamp_se pre-task
UCLAMP_MIN: value, group_id clamp values
UCLAMP_MAX: value, group_id
effective
& UCLAMP_MIN: value, group_id f:=:=- el
S | UCLAMP_MAX: value, group_id |
8
M
task_group
clamp_se

~—»| UCLAMP_MIN: value, group_1id
UCLAMP_MAX: value, group_1id

! back-annotation of
| used clamp values

o

currently

effectively used

effective —
UCLAMP_MIN: value, group_id pre-task_group
UCLAMP_MAX: value, group_id clamp values

system_default{_perf}

limits

clamp_se

system wide

#{ UCLAMP_MIN: value, group_id
UCLAMP_MAX: value, group_id

clamp values

S e e e I e N e N e e S |

~ clamp values

runtime on-denand :

aggregation

fast path
enqueue/dequeue

1000

@0

&0

00

20

v VY

uclmamp

https://goo.gl/a1i7VH

Main Discussion Points (/3

Are we heading in the right direction?

Is bucketization acceptable?
= user-space requests always mapped into a finite number of clamp groups
configured at compile time, e.g. 10-20, as a linear sub-division of the max capacity
= from use-cases on hand we do not expect many different boost/clamp values
clamp groups mapping ensure to use only the minimum number of clamp groups actually required

Are system defaults acceptable?
= system_default clamps for FAIR tasks, restrict task-specific and task group clamps
exposed as (root only writable) /proc/sys/kernel/sched_uclamp_util_{min,max}
by default: util_min=0 and util_max=SCHED_CAPACITY_SCALE
= system_default_perf clamps for RT task
by default: util_min=util_max=SCHED_CAPACITY_SCALE

Is clamping acceptable for RT tasks?
= entirely optional framework, no overheads on ICONFIG_UCLAMP_TASK
= even when compiled in, system_default_perf defaults to always running at max freq

still allows to improve energy efficiency for certain RT tasks on mobile systems
4 © 2018 Arm Limited a rm

Main Discussion Points (/3)

How far are we?

s the effective aggregation acceptable?
= scheduler: compute the actual clamp value at enqueue time
a caching mechanism is possible if we should consider that an overhead
= cgroups: transparently track the most restrictive clamp between a group and its parent

subgroups can always change their clamps
hierarchical updates ensure to always propagate and use the max value

What's the best merging strategy?
= keep refining core bits and merge those before cgroup integration...
risk of data structures not suitable for a smooth integration in the cpu controller
= ...or update the full patchset until both core bits and cgroup support are ACKed?
safer solution but will required more time

5 © 2018 Arm Limited

arm

Main Discussion Points ©/3)

What are possible future extensions?

Add a timer-based release semantic ?
= event-based clamp set, timeout-based clamp reset
touchboost is an example use-case already used in Android
= it can potentially be used to implement features like the iowait boost

with the advantage of being a the per-task / user-space defined hint

Add a generic kernel-space API to access clamp groups ?

= drivers and/or firmware can be interested in asserting clamp values
= we can take advantage of a unified and well defined interface to aggregate user/kernel-space clamps

kernel-space clamps can provide a restriction to user-space clamps
which aggregation policy makes sense will be defined by a single “framework”
= kind-of similar to pm_gos but more cpu and task specific and limited to clamp values

maybe it could make sense to just add util clamp metrics to pm_qos?

© 2018 Arm Limited arm

Thanks for the discussion

| cettyimages™
JazRT {1118

That's all... for Today

© 2018 Arm Limited arm

