
1

UtilClamp
Status update on Utilization Clamping support
for FAIR and RT tasks

Patrick Bellasi
<patrick.bellasi@arm.com>



2

Feed context aware information about tasks requirements
from System Management Software (SMS) to kernel-space

to improve existing policies for OPPs selections and TASKs placement

Introduction
What is the problem on hand?

System Management Software
e.g. Android, ChromeOS, etc...

App1 tasks App2 tasks App2 tasks

Run-Time Optimized Services
e.g. Android applications execution model

Linux kernel components
e.g. scheduler, schedutil, etc...

Constraints
OPP and Task Placement biasing

Monitoring

“TOP APP”“BACKGROUND APPS”

The utilization is already used in many decisions
▪ by schedutil to drive OPP selection
▪ by the (EA)Scheduler for task placement

We are looking for a per-task{group} API
▪ clamp the utilization of each task
▪ aggregate the clamped utilization of 

RUNNABLE tasks on each CPU



3

Proposal
UtilClamp v5[1] in a Nutshell

uclamp_group_get/put() uclamp_cpu_get/put()

util_avg

uclmamp

https://goo.gl/a1i7VH [1]

https://goo.gl/a1i7VH


4

Is bucketization acceptable?
▪ user-space requests always mapped into a finite number of clamp groups

configured at compile time, e.g. 10-20, as a linear sub-division of the max capacity
▪ from use-cases on hand we do not expect many different boost/clamp values

clamp groups mapping ensure to use only the minimum number of clamp groups actually required

Are system defaults acceptable?
▪ system_default clamps for FAIR tasks, restrict task-specific and task group clamps

exposed as (root only writable) /proc/sys/kernel/sched_uclamp_util_{min,max}
by default: util_min=0 and util_max=SCHED_CAPACITY_SCALE

▪ system_default_perf clamps for RT task
by default: util_min=util_max=SCHED_CAPACITY_SCALE

Is clamping acceptable for RT tasks?
▪ entirely optional framework, no overheads on !CONFIG_UCLAMP_TASK
▪ even when compiled in, system_default_perf defaults to always running at max freq

still allows to improve energy efficiency for certain RT tasks on mobile systems

Main Discussion Points (1/3)

Are we heading in the right direction?



5

Is the effective aggregation acceptable?
▪ scheduler: compute the actual clamp value at enqueue time

a caching mechanism is possible if we should consider that an overhead
▪ cgroups: transparently track the most restrictive clamp between a group and its parent

subgroups can always change their clamps
hierarchical updates ensure to always propagate and use the max value

What’s the best merging strategy?
▪ keep refining core bits and merge those before cgroup integration...

risk of data structures not suitable for a smooth integration in the cpu controller
▪ ... or update the full patchset until both core bits and cgroup support are ACKed?

safer solution but will required more time

Main Discussion Points (2/3)

How far are we?



6

Add a timer-based release semantic ?
▪ event-based clamp set, timeout-based clamp reset

touchboost is an example use-case already used in Android
▪ it can potentially be used to implement features like the iowait boost

with the advantage of being a the per-task / user-space defined hint

Add a generic kernel-space API to access clamp groups ?
▪ drivers and/or firmware can be interested in asserting clamp values
▪ we can take advantage of a unified and well defined interface to aggregate user/kernel-space clamps

kernel-space clamps can provide a restriction to user-space clamps
which aggregation policy makes sense will be defined by a single “framework”

▪ kind-of similar to pm_qos but more cpu and task specific and limited to clamp values
maybe it could make sense to just add util clamp metrics to pm_qos?

Main Discussion Points (3/3)

What are possible future extensions?



7

Thanks for the discussion

That’s all... for Today


