
Traffic policing in eBPF: applying 
token bucket algorithm

LPC 2018
Julia Kartseva, hex@fb.com



Traffic policing in eBPF: applying token bucket algorithm
Shaping vs. Policing

Shaping Policing
Buffers exceeding packets No buffering, instant action: drop or remark

Latency increase due to buffering No latency increase, but drops may cause 
retransmits (e.g. in TCP)

Smooths traffic burstiness, output rate 
doesn’t deviate much

Bursts are propagated

Drops packets anyway when buffer capacity is 
reached. Buffer increasing causes higher 
latency

Linux Traffic Control: queuing disciplines, e.g. 
tc htb

Switch side policers,
eBPF-based traffic policing



Traffic policing in eBPF: applying token bucket algorithm
RFC 2698, naive implementation

Two rate three color marker eBPF program in TC egress chain

1 _u64 delta_t = packet_ts –
2 bucket->timestamp;
3 bucket->tokens += delta_t * rate_bps /
4 NS_IN_SEC;
5 bucket->tokens = MIN(bucket->tokens,
6 burst_size);
7 bucket->timestamp = packet_ts;
8 __u64 tokens_spent = 8 * skb->len;
9 /* TC_ACT_SHOT if no enough tokens */
10 __sync_fetch_and_add(bucket->tokens,
11 (-1) * tokens_spent);
12 return TC_ACT_UNSPEC;

Does this code produce the desired rate?



Traffic policing in eBPF: applying token bucket algorithm
Advancing naive implementation

Problem:
Updates are in the kernel space. Data race with multi CPU. Getting and 
adding tokens into a bucket must be executed as an atomic action.

Solution or not?
• Critical section in eBPF program
• Per CPU eBPF data structures
• Update tokens from the user space

What if burst duration is in microseconds?
• Data structures shared between CPUs: lru_hash, array



1 __u64 packet_ts = bpf_ktime_get_ns(); 
2 __u64 burst_dur = burst_size * NS_IN_SEC /
3 rate_bps;
4 __u32 refill_tbuck_idx = (packet_ts + 
5 (K >> 1) * burst_dur) / burst_dur % K;
6 __s64* refill_tokens = bpf_map_lookup_elem(
7 tbuck_arr, &refill_tbuck_idx);
8 if (refill_tokens) *refill_tokens =
9 burst_size;
10 __u32 curr_tbuck_idx = packet_ts /
11 burst_dur % K;
10 /* Subtract tokens from curr_tbuck_idx
11 bucket */

Traffic policing in eBPF: applying token bucket algorithm
Hackish working implementation: kernel space only, eBPF array

Key idea: refill tokens in a future 
bucket, take tokens from the current 
bucket.



Traffic policing in eBPF: applying token bucket algorithm
Policers chaining

• The output rate must 
not depend on the 
order of policers
• If a packet is 

discarded, recredit 
the preceding 
policers
• Policers may not 

belong to the same 
logical hierarchy. No 
common root is 
required, unlike in 
qdisc HTB



Traffic policing in eBPF: applying token bucket algorithm
Limitations

• Heavy hammer
• TCP congestion control + token bucket + DROP = capped max rate but 

underutilized average

• No buffering: drops are inevitable

• Very thin per TCP flow fairness guarantees
• No handy TCP session information in tc chain

• N sub buckets and skb->hash % N

• Token bucket + DSCP remark
• Only for multi-queue network devices

• Packets may be received in disorder


