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Motivation
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BPF Sandbox

○ As a goal of BPF IR JITing of BPF IR to most RISC cores should be very easy
○ BPF VM provides a simple and well understood execution environment
○ Avoids leaking implementation details into the definition of the VM and ABIs (the 

abstraction benefits kernel as much as accelerators)
○ Unlike higher level languages BPF is a intermediate representation (IR) which 

provides binary compatibility, it is a mechanism
○ BPF is extensible through helpers and maps allowing us to make use of special 

HW features (when gain justifies the effort)

Make it easier for vendors to add BPF offload for I/O devices which 
increasingly take a form of slightly customized RISC cores.
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Compare to other IRs

High level language:
OpenCL C, GLSL, BPF C, P4, VHDL

Intermediate representation:
SPIR-V, TGSI, NIR, eBPF, P4CIR

Primitives:
LD/ST + math ops, RISC ops, 

parse/table/action

Targets:
GPUs, RISC, switch ASIC, logic

● all models support some call out/ 
/black box invocation

● all models fit into a fixed pipeline
● other models declare variable types 

(not that it matters..)
● SPIR-V supports multiple memory 

models
● graphics stacks usually allow use 

of complex math instructions
● other IRs try to be lossless/ 

/preserve semantics for longer
● other JITs require a full compiler to 

go from IR -> code
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BPF as heterogeneous ABI

Option 1 - JIT reuse
Have the CPU compile machine code to load.

Core work:
● untangle JITs from architectures
● ensure PIC (or record relocations)

Driver must have:
● list of supported context fields
● helper addresses
● map ID/ptr to use

Potentially needed:
● size/offset of context fields

Hopefully not needed:
● different calling convention
● different register mapping

Option 2 - IR handoff
Send the BPF IR down to the device.

Advantages:
● no trust required
● simpler driver

Disadvantages:
● HW devices (not paravirt) rarely run full Linux
● code duplication
● closed source FW

IR handoff can be implemented at higher layer by 
user space requesting the load via hypervisor 
service.
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Potential reuse of JITs
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Quick PoC
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# hexdump -v -e '/1 "0x%02x, "' \
$netdevsim0_dfs/arm_asm > raw_asm

# make
aarch64-elf-gcc -g -c env64.c -o env64.o
aarch64-elf-as -g -c startup64.s -o startup64.o
aarch64-elf-ld -Tenv64.ld env64.o startup64.o -o 
env64.elf

# qemu-system-aarch64 -M virt -cpu cortex-a57 \
-nographic -kernel env64.elf

Env starting up...
  Entering XDP prog (pkt len: 4096)
    adjust head: 12
  After XDP prog (ret: 2, pkt len: 4084)
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Thank you!

Discussion
(how) do you think eBPF can help open the hardware?


