
© 2018 NETRONOME SYSTEMS, INC. 1

Using eBPF as a heterogeneous processing ABI

Jakub Kicinski <kuba@kernel.org>

BPF Microconference
Vancouver, 15 November 2018

© 2018 NETRONOME SYSTEMS, INC. 2

Motivation

CPU
x86

ACC
MIPS

I/O
Arm

CPU
x86

ACC
MIPS

I/O
Arm

CPU
x86

ACC
MIPS

I/O
Arm

Kernel

HW

XDP

TC

socket

TCP Kernel

HW

XDP

TC

socket

TCP

“switchdev”
XDP

Open up the HW

control
processing
pipelines

© 2018 NETRONOME SYSTEMS, INC. 3

BPF Sandbox

○ As a goal of BPF IR JITing of BPF IR to most RISC cores should be very easy
○ BPF VM provides a simple and well understood execution environment
○ Avoids leaking implementation details into the definition of the VM and ABIs (the

abstraction benefits kernel as much as accelerators)
○ Unlike higher level languages BPF is a intermediate representation (IR) which

provides binary compatibility, it is a mechanism
○ BPF is extensible through helpers and maps allowing us to make use of special

HW features (when gain justifies the effort)

Make it easier for vendors to add BPF offload for I/O devices which
increasingly take a form of slightly customized RISC cores.

© 2018 NETRONOME SYSTEMS, INC. 4

Compare to other IRs

High level language:
OpenCL C, GLSL, BPF C, P4, VHDL

Intermediate representation:
SPIR-V, TGSI, NIR, eBPF, P4CIR

Primitives:
LD/ST + math ops, RISC ops,

parse/table/action

Targets:
GPUs, RISC, switch ASIC, logic

● all models support some call out/
/black box invocation

● all models fit into a fixed pipeline
● other models declare variable types

(not that it matters..)
● SPIR-V supports multiple memory

models
● graphics stacks usually allow use

of complex math instructions
● other IRs try to be lossless/

/preserve semantics for longer
● other JITs require a full compiler to

go from IR -> code

© 2018 NETRONOME SYSTEMS, INC. 5

BPF as heterogeneous ABI

Option 1 - JIT reuse
Have the CPU compile machine code to load.

Core work:
● untangle JITs from architectures
● ensure PIC (or record relocations)

Driver must have:
● list of supported context fields
● helper addresses
● map ID/ptr to use

Potentially needed:
● size/offset of context fields

Hopefully not needed:
● different calling convention
● different register mapping

Option 2 - IR handoff
Send the BPF IR down to the device.

Advantages:
● no trust required
● simpler driver

Disadvantages:
● HW devices (not paravirt) rarely run full Linux
● code duplication
● closed source FW

IR handoff can be implemented at higher layer by
user space requesting the load via hypervisor
service.

© 2018 NETRONOME SYSTEMS, INC. 6

Potential reuse of JITs

x86 Arm MIPS

BPF
check CFG

install map pointers

check paths

remove dead code

check max stack

rewrite CTX access

gen prologue

rewrite legacy access

inline calls

rewrite DIV/MOD insns

resolve calls

blind constants

prologue

code gen

epilogue

verifier
checks

verifier
rewrite

JIT

current
NFP

offload

✓

✓

✓

✓

✓

✓

❌

○

○

✓

❌

✓

○

✓

○

reuse:

© 2018 NETRONOME SYSTEMS, INC. 7

Quick PoC

x86_64
BPF core

arm64
bpf_jit_comp.c

netdevsim

debugfs

user space
linker

QEMU
Aarch64

xdp_buff +
helpers

hexdump -v -e '/1 "0x%02x, "' \
$netdevsim0_dfs/arm_asm > raw_asm

make
aarch64-elf-gcc -g -c env64.c -o env64.o
aarch64-elf-as -g -c startup64.s -o startup64.o
aarch64-elf-ld -Tenv64.ld env64.o startup64.o -o
env64.elf

qemu-system-aarch64 -M virt -cpu cortex-a57 \
-nographic -kernel env64.elf

Env starting up...
 Entering XDP prog (pkt len: 4096)
 adjust head: 12
 After XDP prog (ret: 2, pkt len: 4084)

© 2018 NETRONOME SYSTEMS, INC. 8

Thank you!

Discussion
(how) do you think eBPF can help open the hardware?

