
BPF Microconference • 2018-11-15

eBPF Debugging Infrastructure
•

Current Techniques and Additional Proposals

Quentin Monnet
<quentin.monnet@netronome.com>

mailto:quentin.monnet@netronome.com

Debugging Infrastructure

What do we want to debug, troubleshoot?

To achieve this:

• What debugging tools and methods are available?

• What is missing?

Q. Monnet | eBPF Debugging Infrastructure 2/9

What to Debug: Many Levels

User space

Kernel

Agilio SmartNIC

Hardware

Compile time

Kernel
development

Load time
Verifier

JIT-compiling

Runtime

User space
programming

Q. Monnet | eBPF Debugging Infrastructure 3/9

Compile Time

Objectives:

Make sure the eBPF bytecode is generated as intended when compiling
from C to eBPF

We have:

LLVM backend: compilation
llvm-objdump: dump generated bytecode
eBPF assembly (LLVM): hack a sequence of instructions

Q. Monnet | eBPF Debugging Infrastructure 4/9

Load Time

Objectives:

Load the program and make it pass the verifier, or understand why it is
rejected

We have:

libbpf / ip / tc: load or list programs
libbpf / bpftool (and tc to some extent): eBPF object management
Output from verifier logs, kernel logs, extack messages
Documentation (filter.txt, Cilium guide)

What about:

Checking what loads: bpftool prog probe my_file.o
(work in progress, idea from Daniel)
man pages (bpf(2) or tc-bpf(8) are badly outdated)
Troubleshooting F.A.Q.? (e.g. some items already in filter.txt)

Q. Monnet | eBPF Debugging Infrastructure 5/9

Runtime

Objectives:

Understand why a program does not run as intended, for example
when processing network packets

We have:

bpftool: introspection for maps / programs, object management
Readability improved with BTF
bpf_trace_printk(), perf events: print items, data
(Limited user space eBPF virtual machines)
Hooks in binutils-gdb, but no simulator support
tools/bpf/bpf_dbg.c (cBPF)

What about:

Debugger: break points, possibility to dump registers / stack / context?
• Complete support in GDB?
• Anything doable with LLDB? But how to pass packet data?
• Extend BPF_PROG_TEST_RUN infrastructure? (idea: Daniel)

Q. Monnet | eBPF Debugging Infrastructure 6/9

Kernel Development

Objectives:

Improve the eBPF architecture in the kernel, without breaking existing
features

We have:

Selftests: verifier, test programs
Samples programs
BPF_PROG_TEST_RUN infrastructure
KASAN, syzkaller

What about:

Having all JITs built-in, dump (then test) images for all architectures
(idea: Daniel)

Q. Monnet | eBPF Debugging Infrastructure 7/9

User Space Programming

Objectives:

Debug or enhance a program managing eBPF objects
Generally improve eBPF support in the toolchain

We have:

strace, valgrind support: tracing system calls, memory checks

What about:

Probing kernel for features (with bpftool)? (idea: Daniel)
Bytecode generation: ethtool n-tuples (in progress), libpcap?

Q. Monnet | eBPF Debugging Infrastructure 8/9

Thank you!

Discussion
What do you feel is missing for debugging eBPF?

Q. Monnet | eBPF Debugging Infrastructure 9/9

Backup: Dump All JIT Images

Kernel JITs: ARM64, ARM32, PowerPC64, s390, Sparc64, MIPS, x86_64, x86_32
Offload: NFP
Objectives:

Test images for all architectures
Find bugs or low hanging perf improvements

Idea (Daniel):

All JIT built-in in the kernel
Pass a flag to bpf(PROG_LOAD, ...) to JIT-compile for all arch
Pass a flag to bpf(OBJ_GET_INFO_BY_ID, ...) to dump all images
Simulate execution on several architectures
Add tools/ to bootstrap VMs to test the images?

Q. Monnet | eBPF Debugging Infrastructure 10/9

Backup: Extend BPF_PROG_TEST_RUN

Member in union bpf_attr for bpf(BPF_PROG_TEST_RUN, attr, size):

struct { /* anonymous struct used by BPF_PROG_TEST_RUN command */
__u32 prog_fd;
__u32 retval;
__u32 data_size_in;
__u32 data_size_out;
__aligned_u64 data_in;
__aligned_u64 data_out;
__u32 repeat;
__u32 duration;

} test;

Fields data_out, data_out_size, retval, duration are filled by kernel
Idea:

Add a field to pass break points (insn number, program entry point?)
Add fields or buffer to dump internal state: register values, stack, data?
Maybe a front-end loader? bpftool?

Q. Monnet | eBPF Debugging Infrastructure 11/9

Backup: Probe Kernel with Bpftool

Example output:

bpftool kernel probe
/* System configuration */
#define HAVE_BPF_SYSCALL
#define UNPRIVILEGED_BPF_DISABLED 0
#define JIT_COMPILER_ENABLE 0
#define JIT_COMPILER_HARDEN 0
#define JIT_COMPILER_KALLSYMS 0
#define LINUX_VERSION_CODE 267008

/* eBPF program types */
#define HAVE_SOCKET_FILTER_PROG_TYPE
#define HAVE_KPROBE_PROG_TYPE
...
/* HAVE_STACK_MAP_TYPE is not set */

/* eBPF map types */
#define HAVE_HASH_MAP_TYPE
#define HAVE_ARRAY_MAP_TYPE
...

/* eBPF helper functions */
#define HAVE_BPF_MAP_LOOKUP_ELEM_HELPER
#define HAVE_BPF_MAP_UPDATE_ELEM_HELPER
...
/* HAVE_BPF_MSG_PUSH_DATA_HELPER is not set */

Q. Monnet | eBPF Debugging Infrastructure 12/9

Backup: Generate eBPF with Libpcap / Ethtool Syntax

libpcap: patch the library or create an equivalent to use a similar
syntax to produce eBPF programs
tcpdump -d ”port ssh”
(000) ldh [12]
(001) jeq #0x86dd jt 2 jf 8
(002) ldb [20]
(003) jeq #0x6 jt 4 jf 19
(004) ldh [54]
(005) jeq #0x16 jt 18 jf 6
...
(019) ret #0

ethtool: implement a library to turn such rules into eBPF programs
ethtool --config-ntuple eth0 flow-type tcp dst-port 22 action -1
<drop incoming SSH packets on a server>

Q. Monnet | eBPF Debugging Infrastructure 13/9

