Motivation

 Examples Bounded Loops

for (i=0; i < max; i++) { do work }
while (i>blah) { ... };
do { work } while {i}

e Guidelines:

- Lots of academic work on complex loops
« polynomial invariants, Grobner basis and more < fun but lets stick to basic ax+c for now.

« Agenda:
Review terms, goals, etc.
Approach #1 (by the books)
Approach #2 (compiler aided)
Approach #3 (instruction based)
Discuss



_ _ _ _ his a header node
I and | are Induction variables e, backedge n->h

int array[10] = init
int max = 10, foo = blah, bar = blah;

for (1= 0; i < max; i++) {
int|] =i *foo + bar;

value = bpf_map_lookup_elem(&map,
&key);
if (value > 0)
sum += array|]]
else
sum -= array[|]

CFG
nat loop Inat loop

h dominates n, x, y

Natural loop: the set of nodes x, where h dom

x with a path from x to n _not_ containing h.
intuition: Does not have multiple goto's into loop.

Find Natural Loop Algorithm:

1. Compute CFG and Dominator Tree
2. Find back edges

3. Find the natural loop using DOM Tree DOM Tree




Approach #1: by the book

https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next.git/ wip/bpf-loop-detection

Build CFG

Build DOM Tree

Detect and abort on irreducible loops
Find loops (back edges)

For Each Loop

- Find induction variables (pattern matching)
- Verify bounds on loop induction variable terminate

“run” loop with worst case bounds, pruning works, array index worst case.

Challenge: Many LLVM loop

hdr: hdr:
dr<d0 Stuff> patterns. At the moment we
if (i = x) goto hdr <do stuff> do pattern matching and can
It (1 1= x) goto out extend these but fragile.

<do more stuff>
goto hdr out:

<outside loop> PROP1: General forest of

Induction variables or SCEV
needed.



Approach #2: Compiler Aided

https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next.git/ wip/bpf-loop-detection

Limit types of loops constructed by LLVM

hdr:
<do stuff>
if (i I= x) goto hdr

Easy to pattern match if LLVM plays along

Still need to do full verification of natural loops (build DOM tree, etc.) and
find induction variables. But somewhat easier because of friendly LLVM.



Approach #3: New Instructions

* Loop specific instructions

- Denote loop blocks with instructions loop/end

- Requires LLVM backend to convert unstructured gotos into structured
loops. DOM tree no longer required replaced with strict hierarchy of
blocks.

- Ensure goto’s into loop blocks fail, overlapping blocks not allowed,
induction variable tracking still required.

BPF instruction label, NOP in JIT > BPF_JMP_LOOP(BPF_J LOOP_LABEL)

[...] < (jumps into block not allowed)

BPF *JLP* instructions, » BPF_JMP_LOOP(BPF_JLPEQ, BPF_REG_O0, 0)

jumps to scoped paired

BPF_JLOOP_LABEL. Verifier
will need to track pairs and replace
with proper jumps after verification.



DiScuss

Decide how to proceed and get loop support.



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

