
BPF Host Network Resource Management

Lawrence Brakmo, Alexei Starovoitov
Facebook

Menlo Park, USA

Abstract

Linux already supports the allocation and management of
many of its resources. Examples are CPU and memory, were
one can allocate these resources per cgroup. However, the
network subsystem lacks good mechanisms for managing its
resources. For example, it is not easy (or in some cases pos-
sible) to allocate egress and ingress bandwidth per cgroup.

In contrast to CPU and memory that are local resources,
networking is a global shared resource. For example, if we
want to limit ingress bandwidth per cgroup, we need to mod-
ify the sender to slow down. Dropping packets at the re-
ceiver when the ingress bandwidth is exceeded may penalize
the sender but cannot recover the wasted bandwidth.

In this paper we propose a new BPF based mechanism
for managing bandwidth that is efficient, eliminates stand-
ing queues and is flexible.

Keywords
BPF, Linux, TCP, Networking

 Introduction
The goal of the BPF Nework Resource Management (NRM)
project is to provide the necessary mechanisms for manag-
ing network resources, such as bandwidth, through BPF pro-
grams. In other words, to create a BPF based framework for
efficiently supporting policing of both egress and ingress
traffic based on both local and global network allocations.
For example, limiting per-cgroup egress and ingress band-
widths.

By efficient we mean things like not wasting bandwidth
(i.e. flows can reach the imposed limits) and not increasing
latencies (i.e. not increasing RTTs or not increasing tail la-
tencies of RPCs). Just dropping packets can cause both is-
sues, so the framework supports other mechanisms that are
covered in later sections.

 Linux currently provides traffic control (tc) and queue
disciplines (qdisc) that can be used for limiting egress rates.
However, there is a history of performance issues when us-
ing the HTB qdisc for this purpose. In addition, using qdisc

for rate limiting can create standing queues in the queue dis-
cipline that increase connection RTTs. Finally, using tc
qdiscs lacks the flexibility inherent in BPF programs.

 In addition to providing mechanisms for local network
resource management, we are also adding support for man-
aging global resources, such as bandwidths external to the
host. Examples of this would be managing bandwidths at
external links, such as backbone links, or ingress band-
widths at other hosts (which require notifying the sender to
slow down).

Overview
The NRM framework uses existing BPF cgroup skb hooks
(egress and ingress) to keep track of bandwidth use and to
enforce bandwidth limits. Rather than drop packets as most
tc qdisc do to enforce limits, we provide a richer set of tools
to achieve this. For example, the NRM BPF program can
use ECN congestion marking for flows supporting ECN. In
addition, for TCP flows, it can call tcp_enter_cwr() to re-
duce the cwnd of the TCP flow or it can also set the cwnd
directly. And finally, it can also just drop the packet which
is necessary to insure enforcement of bandwidth limits.

 In order to support more intelligent BPF NRM program,
these programs can also read current and minimum RTTs as
well as the value of the current cwnd. The ability to know
the flow’s RTT means that one can write NRM BPF pro-
grams that could increase fairness between small RTT and
long RTT flows when enforcing egress or ingress bandwidth
limits.

 In order to achieve support for enforcing bandwidth lim-
its based on global network allocations, we propose the use
of resource scopes. For example, we could have a per cgroup
scope that is used to police egress and/or ingress traffic, a
scope for a particular backbone link (i.e. policing all traffic
from this host on that link), etc.

 For the rest of the paper we will only consider per cgroup
egress and ingress scopes. Support for more complex scopes
is currently under development.

Bandwidth Management
 We use virtual token bucket queues to manage band-
width; each scope has its own virtual queue managed by the
NRM BPF program. The minimum state required to main-
tain the virtual queue is:

struct vqueue {
 long credit; // in bytes
 long long last_time; // in ns
};

 The state is updated whenever a packet is sent as fol-
lows:

vqueue.credit += credit_per_ns(cur-
rent_time – last_time, limit_rate);

vqueue.credit = max(vqueue.credit,
MAX_CREDIT);

vqueue.credit -=
wire_length_in_bytes(skb);

vqueue.last_time = current_time;

Where:

credit_per_ns() returns new credit accrued dur-
ing the interval of time since the last packet was sent.

 MAX_CREDIT represents the maximum credit that can
be accrued. Credit that is not used cannot continue to ac-
cumulate forever.

wire_length_in_bytes(skb) Returns the size
in bytes that the skb will take in the link. Because the skb
can be larger than the maximum packet size (due to
TSO), we need to account for the extra bytes taken by
each packet header (E.g. TCP, IP and ETH).

Then, the NRM BPF program makes decisions based on the
credit, skb and socket information when the NRM BPF pro-
gram executes, triggered by an skb write.

Our sample program uses 2 negative valued thresholds, a
MARK_THRESHOLD and a DROP_THRESHOLD for deter-
mining what actions to take. Figure 1 shows how the current
value of credit triggers actions. Note that the credit is al-
lowed to be negative in order to support bursts without drop-
ping packets. If the credit is greater than MARK_THRESH-
OLD, then the skb goes through. If the credit is between the
thresholds, then the packet is “marked”.

 The action taken on marked packets by the sample pro-
gram is dependent on flow details. If the flow is ECN ena-
bled (i.e. its IP packets are marked with either ECT0 or

ECT1), then the packet is ECN marked as having experi-
enced congestion. Otherwise, if the flow is a TCP flow, we
call the BPF helper function bpf_enter_cwr(skb), which
calls tcp_enter_cwr() to reduce the congestion window
(cwnd) of the flow, based on a linear probability function.
Figure 2 shows the response function used to determine if
the flow will be made to reduce its cwnd.

 The closer the credit is to DROP_THRESHOLD, the more
likely that its cwnd will be decreased. If the credit is less
than DROP_THRESHOLD, then the packet is dropped. In
practice, there is a small area (equal to 15*1500 bytes) that
is reserved for small packets (less than 100 bytes) in order
to reduce the likelihood that small packets will be dropped.
This protects SYN and SYN-ACK TCP packets as well as
pure ACK packets.

Performance Issues
While developing the NRM framework we became aware
of issue that were affecting performance.

1. TCP not aware when packets dropped
TCP is not aware when packets dropped by the NRM BPF
program. When packets are dropped by a qdisc, or a BPF
program associated with traffic control (tc), queue_transmit
(called from __tcp_transmit_skb()) returns a special value
to nofity TCP that the packet was dropped. TCP then “for-
gets” that it sent the packet (so it will be transmitted again)
and tcp_enter_cwr() is called to reduce the cwnd.
 In contrast, when packets are dropped by a cgroup skb
BPF program, there is not special return value to notify TCP.
As a result, TCP assumes the packet was sent and it will need
to go through the expensive (in terms of flow performance)
loss detection and recovery code.
 Our solution was to use a flag to notify TCP that the
packet was dropped by the NRM BPF program so TCP will
“forget” it sent the packet.

2. High tail latencies due to dropped packets

When a packet is dropped, and there are no packets in flight,
it is possible that nothing will trigger sending a new packet

Figure 1: Credit thresholds

Figure 2: Probability of calling bpf_enter_cwr()

until a timeout occurs (no ACKs will arrive to trigger send-
ing new packets). The timeout that usually triggers new
packets to be sent is the probe timer (around 200ms).
 Our solution was to decrease the probe timer to 20ms
when a packet is dropped and there are no other packets in
flight. We created a new sysctl to control the value to use for
the probe timer. It defaults to 20ms and setting it to 0 disa-
bles decreasing the probe timer when the NRM BPF pro-
gram drops packets.
 Table 1 shows the benefits of our solution. We use a rate
limit of 1Gbps for a cgroup with between 1 and 9 concurrent
flows running back-to-back RPCs. The first 2 columns show
the aggregate goodput (payload throughput) in Mbps with
the upstream kernel and with a kernel patches with our so-
lution (small timer). The last 2 columns show the 99.9% la-
tencies for the 1MB RPCs before and after implementing
our solution.

 The table shows improvements in both the aggregate
goodput and in the 99.9 percentile latencies. The goodput
increases are especially large when there is only one flow.

 Table 2 shows the respective results when we use DCTCP
(which uses ECN marking) instead of Cubic. The improve-
ments are not as large except for the 9 flows case. Finally,
note that the aggregate goodput for both Cubic and DCTCP
is larger than 1Gbps in some cases. This was caused by the
following issue.

3. Updating credit and last_time is a critical section

In multiprocessors, the NRM BPF code that updates both
the credit and last_time forms a critical section that needs to
be protected. Otherwise, the NRM BPF program cannot en-
force the bandwidth limits. Our solution was to protect the
whole NRM BPF program with spinlocks, making the
whole program a protected critical section.

 Obviously, this is not an ideal solution since it increases
CPU usage due to contention of the spinlocks. There are two
other solutions we are working on:

1. Add support for spinlocks in BPF programs. This
is currently being worked on.

2. Explore using a data structure for managing the vir-
tual queue that does not have a critical section.

 Once we protected the critical section the bandwidth used
by the cgroup was always within the desired limit. In addi-
tion, the tail latencies or the RPC flows also decreased.

Experimental Results
The experimental setup was as follows:

1. We only used 1 cgroup
2. One server sends to another in the same rack
3. We had 1 to 9 concurrent flows doing back to back

RPCs:
a. 1 flow: 1 – 1MB RPC
b. 2 flows: 1 – 1MB RPC and one 10KB

RPC
c. 5 flows: 4 – 1MB RPCs and one 10KB

RPC
d. 9 flows: 8 – 1MB RPCs and one 10KB

RPC
4. Bandwidth is limited either by using TC with HTB

or using our NRM framework
5. Limits of 1Gbps or 5 Gbps
6. In some cases we used netem to increase link la-

tency to 10ms.
7. We compare 4 cases:

a. Cubic[3] using TC and HTB for rate shap-
ing

b. Cubic using NRM BPF for policing
c. Cubic with ECN and NRM BPF for polic-

ing
d. DCTCP[2] and NRM BPF for policing

We used Netesto[1] to create the traffic and collect flow sta-
tistics and experiment metrics.

Egress, 1Gbps no added delay

The first experiment consists of a 1Gbps rate limit. Figure 3
shows the aggregate rate for all concurrent flows as well as
the RTT seen by the flows (or by a different process within
the cgroup doing pings).

 The axis on the left goes with the bars, while the axis on
the right goes with the diamonds. The graph shows that
when using TCP the aggregate bandwidths are a little
smaller, except for the case of 1 Cubic flow without ECN

Table 1: Effect of decreasing probe timer on Cubic traffic

Table 2: Effect of decreasing probe timer on DCTCP traffic

where the aggregate bandwidth is about 10% lower. In addi-
tion, the RTTs are much larger when using TC and HTB for
rate shaping.

 The larger RTTs are caused by the standing queues
(queues that do not completely dissipate) caused by using
HTB for rate limiting. Note that we used the default value
of 260KB for the sysctl tcp_limit_output_bytes. At 1Gbps,
sending 260KB takes about 2ms, which matches the RTT
results.

 The next figure, Figure 4, shows the aggregate rates for
the 1MB RPCs (bars) and the rate of the 10KB RPC (dia-
mond). Note how the rate of the 10KB RPCs are very small
when using HTB for rate control. This is caused by the
standing queues and the resulting increase in RTTs. At most,
only one RPC can occur per RTT. Hence, at 2ms RTT the
10KB are limited to a rate of at most 10KB/2ms or 40Mbps.
As a consequence, using HTB creates unfairness between
RPC of different sizes. Larger RPC sizes can achieve a
higher rate (1MB RPCs are limited to a rate of 1MB/2ms or
4Gbps.

 In contrast, when using NRM for rate limiting, the 10KB
RPC achieves more than 60% of the rates of the 1MB RPCs.
The next figure, Figure 5, shows the 99.9 and 50 percentile
latencies for the 1MB RPCs. The primary issue is the in-
creased tail latency for Cubic when using NRM. We will be
exploring new response functions to see if we can decrease
the tail latency.

 Figure 6 shows the 10KB 99.9 and 50 percentile latencies.
DCTCP with NRM has much smaller 99.9 percentile latency
as compared to the other cases.

 In summary, the aggregate rate is similar among all the
cases. Using HTB for rate limiting results in standing queues
that increase RTTs. As a result, HTB in unfair between small
and large RPCs; 10KB RPCs achieve rates up to 20x less.
DCTCP with NRM hwas much lower 10KB tail latency, be-
tween 10 and 80x lower.

 Egress, 1 Gbps, 10ms netem delay

Table 3 shows the aggregate rates and 1MB 99.9 percentile
latencies when we increase the link delay to 10ms through
netem. With only 1 flow, they all undershoot the bandwidth
limit. HTB with fq qdisc (and pacing) achieves lower rates
than without fq. With only one flow, the 99.9% latencies of
HTB are worse than for DCTCP and NRM. On the other
hand, the tail latencies of the 9 flow experiments are lower
for HTB than for the others.

Egress, 5 Gbps, no added delay

Table 4 shows the rates and latencies the cgroup rates are
limited to 5Gbps. The most noticeable result is that, again,
HTB penalizes the 10KB RPC. The rate is only 35 Mbps vs.
295 Mbps for DCTCP and NRM. Similarly, the 99.9% la-
tency is 3.7ms vs. 0.8ms for DCTCP.

 However, the 99.9% latencies are smaller with HTB than
anything else. Especially when using Cubic, when the tail
latencies are more than 5x larger. The tail latencies for
DCTCP are “only” 50% larger with 9 flows. Looking with
more detail at the DCTCP behavior we see some concerning
behaviors, where the cwnd periodically decreases. We will

Figure 3: Aggregate Rate and RTT for 1Gbps limit

Figure 4: Goodputs of 1MB and 10KB RPCs

Figure 5: 1MB RPC Latencies

Table 3: Rates and latencies for 1Gbps and 10ms

investigate to see if the performance of DCTCP can be im-
proved.

Ingress, 1 and 5 Gbps rate limits

To limit ingress rates we use the same mechanisms as for
egress. Since we need a mechanism to notify the sender to
slow down (otherwise we cannot enforce the rate limit) we
only tested DCTCP and NRM.

 Table 4 shows the results. NRM with DCTCP was very
effective at limiting the ingress rates achieving 925 Mbps
and 4.6 Gbps respectively. The tail latencies were very well
behaved, except for the case of 9 concurrent flows at 1Gbps
rate limit when the NRM program dropped packets. But
when no packets were dropped, the 99.9 and 50% latencies
are very close (which is very good).

Conclusions

Egress BPF based NRM is able to prevent standing queues
and as a result small RPCs get higher rates and lower tail
latencies. The best NRM results are achieved when using
DCTCP. There are some cases when using HTB for rate
limiting achieves better results, but we are only starting to
explore NRM policing algorithms.

 Finally, NRM BPF is a great platform for experimenting
with policing algorithms for network resource management.

Future Work

There is still a lot of work to do. We plan to do the following:

1. Explore new policing algorithms

2. Tests concurrent flows with different RTTs
3. Explore using RTT in the policing algorithms

4. Test using multiple scopes such as multiple
cgroups and multiple scopes per flow

5. Test concurrent flows with different TCP variants.
For example DCTCP and Cubic.

6. Explore mechanisms for notifying senders when
doing ingress NRM and the packets do not support

ECN.

7. Explore using a host ingress scope to decrease
incast losses.

8. Rather than reacting to the packets once TCP sends
them, explore checking how much data could be
sent before TCP sends an skb. This would allow us
to reduce the skb size in order to prevent just
dropping the skb.

References

1. Brakmo, L. 2017. Network Testing with Netesto.
Netdev 2.1 Technical Conference, Montreal, Can-
ada.

2. Mohammad Alizadeh , Albert Greenberg , David
A. Maltz , Jitendra Padhye , Parveen Patel , Balaji
Prabhakar , Sudipta Sengupta , Murari Sridharan,
Data center TCP (DCTCP), Proceedings of the
ACM SIGCOMM 2010 conference, August 30-
September 03, 2010, New Delhi, India

3. Sangtae Ha, Injong Rhee and Lisong Xu, CUBIC:
A New TCP-Friendly High-Speed TCP Vari-
ant, ACM SIGOPS Operating System Review, Vol-
ume 42, Issue 5, July 2008, Page(s):64-74, 2008. Table 4: Ingress, 1 and 5 Gbps rate limits, DCTCP

