BPF HOST NETWORK RESOURCE
MANAGEMENT

Lawrence Brakmo Alexei Starovoitov

Facebook
brakmo@fb.com ast@fb.com

Introduction

Linux supports allocating and managing many system
resources such as CPU and memory.

Network allocation an management is harder since it is
both a local and a global resource.

Require mechanisms to allocate and manage bandwidth

both locally (i.e. per cgroup) and externally (i.e. per link or
per switch).

Ingress bandwidth management requires notifying senders to
slow down.

s\f@fb

Traffic control

Current mechanism, traffic control (tc), allows shaping of
outgoing traffic and policing of incoming traffic.

It has been used for managing external bandwidths (e.g.
Google’s BWE).

However, tc has a history of performance issues when
using many htb (Hierarchical Queuing Discipline) queues.

tc bandwidth allocation usually results in standing queues*
(other issues with codel).

Lacks the flexibility usually provided by general
programming constructs.

s\f@fb

Goals

a BPF based framework (l\/l;!\%l}’l) for efficiently supporting
shaping of both egress and ingress traffic based on both
local and global network allocations.

Initial assumption that majority of traffic is TCP (or it has
similar congestion control).

Eliminate/reduce standing queues.
Flexibility (comes for free with BPF).

s\f@fb

Overview

Use existing egress and ingress cgroup skb hooks.
For egress use ECN, calls to tcp_enter cwr, or drops.

For ingress use ECN (or similar) to notify sender to slow
down.

Use scopes to manage bandwidth
E.g. cgroup scope, particular link/switch scope, ...
Each socket belongs to a set of scopes

When sending a packet we update the bw utilization of the
socket’s scopes

Congestion is determined by the most congested scope

s\f@fb

Network Scopes Example

Backbone Router ‘ ‘

/ N\
, ’ Backbone scopes N .
y (one per service) \
/ N\
/ N\
7 \
Rack Switch
C Egre e
/ group EETess scopes Cgroup Ingress scopes

(1 per cgroup per host) (1 per cgroup per host) |

Consider 2 flows from hosts 1 to host N belonging to same service
Flow 1 could belong to scopes Red, Green & Blue
Flow 2 belongs to scopes , Green & Blue A\ f@fb

BW management

We use a virtual queue to track bw use (per scope)
Struct vqueue { int credit; /* in bytes */
long long lasttime; /* in ns */
}i
When sending a packet:
Credit += credit_per ns(currtime - lasttime, rate); // need to bound

Credit -= wire_length _in_bytes(skb); // need to account for TSO
Make decision based on credit and packet info

Have to account for GRO and LRO packets
A\ f@fb

Current Congestion Algorithm

credic [I

Drop Mark - 0 +
Threshold Threshold

* If credit < Drop Threshold, then drop it (small packet buffer)
If credit < Mark Threshold, then “mark it”

ECN: mark it

TCP — non-ECN: call tcp_cwr _enter() with a linear probability. The closer
credit is to Drop Threshold, the more likely to call cwr

Virtual buffer to absorb bursts

Drop threshold: 600pkts (reserved space for small packets)
Mark threshold: 120pkts

s\f@fb

CUBIC MARK FUNCTIONS

Probability
of calling
enter_cwr ()

Probability
of calling
enter_cwr ()

Current

MT DT
CREDIT

Explore other
response functions

MT DT
CREDIT

s\f@fb

Issues

Packets dropped by cgroup skb BPF program do not trigger call
to enter cwr (cwnd reduction).

Solution: helper BPF function to call tcp_enter cwr
Advantage: can make better decisions (probabilistic reductions)

High tail latencies due to dropping packet and no more packets
in transit (packets out = 0).

For example, 1Gbps bound and 9 flows within rack => cwnd should be
less than one.

When no more ACKs to trigger new packets, TCP depends on probe0
timer to resend. Default >= 200ms

Solution: reduce probe timer to 20ms in these cases

s\f@fb

Issues (2)

Update of Credit and Lasttime is a critical section
Needs to be protected
Currently we do not have spinlocks in BPF programs
Hack: spinlock the whole BPF program
Fix 1: work on bpf_spinlock support is happening in parallel

Fix 2: use data structure not requiring locks

s\f@fb

experiments

Only 1 scope (belonging to 1 cgroup)
One hosts sends to another host in a rack
One or more 1MB and 10KB RPCs
1-1MB
1-1MB and 1 - 10KB
4 -1MB and 1-10KB
8-1MB and 1-10KB
Limit rate by either by NRM or TC (htb)

Introduce latency by netem on receiving host

s\f@fb

Experiment 1Gbps rate
Test smaller probe timer, 1MB RPC Latency

< timer < timer < timer < timer
| YV 250ms 84ms 953M 953M Ims 9ms
2 856M Y 260ms 44ms 962M 962M 22ms 2Ims
5 935M 989M 465ms 92ms |003M 1004M 52ms 48ms
9 999M 1006M 345ms 1029M 1020M 78ms

Reducing probe timer to 2oms reduces tail latency
significantly!

From now on assume reduced probe timer

s\f@fb

Aggregate Rate (Mbps)

1.1K 5

1K =

900 5

800 -

700

600 -

500 =

400

300 =

200 =

100

1Gbps Limit: Aggregate Rate and RTT

- 9K

— 8K

— 7K

— 6K

- 9K

— 4K

— 3K

— 2K

— 1K

1c1s-1f 1c1s-2f 1¢c1s-5f 1¢c18-9f
Number of Flows

¢ RTT (us)

Experiment
cubicecn=01G TC
dctcp 1G

cubic ecn=01G
cubic ecn=11G

A\ f@fb

1Gbps Limit: 1MB and 10KB Rates

900 e g _ T S P i 900
Experiment

500 - A e — —— r———— ~%0 — cubic ecn=01G TC
: : : detep 1G

— 700

~J

o

o
1

- CUbIC ecn=01G

cubic ecn=11G
— 600

(o))

o

o
1

- 500
R - 400

— 300

(o]

o

o
|

— 200

Average Rate of 1MB RPC (Mbps)
S 3
| |

¢ Rate of 10KB RPCs (Mbps)

— 100

—

o

o
1

1c1s-2f 1c1s-5f 1¢c1s-9f
Number of Flows

s\f@fb

1Gbps Limit: 1MB RPC Latencies

99.9% Latency (ms)

[0/ ——— s ———— — s — ~ 1000
; l | Experiment
' | ' | l cubic ecn=01G TC
dctcp 1G

100

10 4

cubic ecn=01G
cubic ecn=11G

€ 50% Latency (ms)

1c1s-1f 1c1s-2f 1c1s-5f 1c1s-9f
Number of Flows

s\f@fb

1Gbps Limit: 10KB RPC Latencies

1c1s-2f 1¢c1s-5f 1¢c1s-9f
Number of Flows

- - 100000
| ’ Experiment
- CUbIC ecn=01G TC
— dctcp 1G
- CUbIC ecn=01G
g - CUbIC ecn=11G
S - 10000
S i ;
5 >
: O
C o
m e
: 3
§ N
. Qo
@ 10004 o &
| — ¢

s\f@fb

1 Gbps Limit Conclusions

Similar aggregate rate (except for 1 flow Cubic)
High RTTs when using TC (standing queue)
Default output_limit_bytes is 260KB, at 1Gbps => 2ms
TC is size unfair, 10KB RPCs get up to 20x less rate
Cubic and Cubic-ecn have higher 1iMB RPC tail latencies
DC-TCP has much better 10KB tail latency (10x to 8ox lower)

s\f@fb

1 Gbps Limit & 10ms

Cong Rate 1-flow 9-flow Aggr 1-flow 1-MB 9-flow 1-MB
Control Control Rate (Mbps) Rate (Mbps) 99.9% Lat (ms) 99.9% Lat (ms)

Cubic HTB - fq

Cubic HTB HTB 437 945 20 120
Cubic mq-fq NRM-BPF 410 915 46 141
Cubic mqg-fqgc NRM-BPF 754 944 12 218
DC-TCP mqg-fq NRM-BPF 666 947 13 143

A\ f@fb

1 Gbps Limit & 1oms RTT Conclusions

Best rate is achieved with Cubic, mg-fq_codel and NRM-BPF for
rate control

However, 9-flow tail latency is higher at 218ms

Using Cubic with HTB for rate control reduces tail latency (85 or
120mMs)

However, 1-flow rate decreases (to 441 from 760Mbps) and also
increases 1-flow tail latency (to 20 or 58ms from 12ms).

Using DC-TCP with NRM-BPF for rate control produces results
between the previous 2: 666Mbps and 13/120ms tail l[atencies

Note: There seems to be an issue with DC-TCP that may increase

latencies.
A\ f@fb

5Gbps Limit

Cong Rate Aggr Rate (Mbps) | 1-MB 99.9% Lat (ms)
Control Control

_--)

Cubic

Cubic mq-ch NRM-BPF 4.2 4.7 6.5 113 243 0.8
Cubic-ECN mg-fqc NRM-BPF 4.4 4.2 4.7 227 196 .1
DC-TCP mqg-fgc NRM-BPF 4.6 4.9 4 27 295 0.8

A\ f@fb

5Gbps Limit Conclusions

Cubic with HTB for rate control produce the best 1IMB
results at the cost of 10KB results

o-flow 1MB: 4.8Gbps and 18ms tail latency
o-flow 10KB: 35Mbps and 3.7ms tail latency

NRM-BPF produced much better 10KB results, but worst
1MB results

Cubic 9-flow 1MB: 4.2Gbps and 113ms tail latency
Cubic 9-flow 10KB: 243Mbps, 0.8ms tail [atency
DC-TCP o-flow 1MB: 4.6Gbps, 27ms tail [atency
DC-TCP 9-flow 10KB: 295Mbps, 0.8ms tail latency

s\f@fb

NRM Ingress

Similar idea: use a virtual queue to track usage

Want a mechanism to notify sender
Otherwise need to depend on packet drops (bad)
Options
DC-TCP - uses ECN to notify sender

Cubic — use a side channel to notify sender
Use ECN markings (maybe ECT1if ECTo is default as in Linux)

BPF program on other side does cwr
Incast prevention does not drop, only mark so it can use
switch buffers :
2\ f@fb

DCTCP Ingress

| Limit | | Aggregate | | o9.9%latency(ms) | s5o%Latency(ms)

(Mbps) m Rate (Mbps) IMBRPC | 10KBRPC | 1MBRPC | 10KB RPC
925 0 9.5 9.0

1000 1
1000 2 922 0 19.0 0.7 13.0 0.2
1000 5 931 0 47.9 0.9 43.0 0.5
1000 9 945 1493 336.0 207.0 54.0 0.8
5000 1 4600 0 4.1 1.7

5000 2 4600 0 4.7 0.6 1.9 0.2
5000 5 4670 0] 12.4 1.0 7.7 0.2
5000 9 4630 0 18.5 0.8 15.5 0.2

A\ f@fb

Conclusions

Egress NRM prevents standing queues (i.e. smaller RTT) as
long as host average BW utilization is smaller than NIC rate.

As a result smaller RPCs have smaller latencies

Using BPF provides great flexibility and is a great platform
for experimentation.

s\f@fb

Future work

Explore different marking algorithms (response functions)
Explore using connection RTT in marking algorithm

Test multiple scopes
Multiple cgroups (each flow only has one scope)

Multiple scopes per flow

Test concurrent flows with different RTTs
Test concurrent flows with different TCP variants
Ingress NRM with sender notifications

s\f@fb

