
BPF HOST NETWORK RESOURCE

MANAGEMENT

Lawrence Brakmo Alexei Starovoitov

Facebook

brakmo@fb.com ast@fb.com

Introduction

• Linux supports allocating and managing many system
resources such as CPU and memory.
• Network allocation an management is harder since it is

both a local and a global resource.
• Require mechanisms to allocate and manage bandwidth

both locally (i.e. per cgroup) and externally (i.e. per link or
per switch).
• Ingress bandwidth management requires notifying senders to

slow down.

Traffic control

• Current mechanism, traffic control (tc), allows shaping of
outgoing traffic and policing of incoming traffic.
• It has been used for managing external bandwidths (e.g.

Google’s BwE).
• However, tc has a history of performance issues when

using many htb (Hierarchical Queuing Discipline) queues.
• tc bandwidth allocation usually results in standing queues*

(other issues with codel).
• Lacks the flexibility usually provided by general

programming constructs.

Goals

• a BPF based framework () for efficiently supporting
shaping of both egress and ingress traffic based on both
local and global network allocations.
• Initial assumption that majority of traffic is TCP (or it has

similar congestion control).
• Eliminate/reduce standing queues.
• Flexibility (comes for free with BPF).

Overview

• Use existing egress and ingress cgroup skb hooks.
• For egress use ECN, calls to tcp_enter_cwr, or drops.
• For ingress use ECN (or similar) to notify sender to slow

down.
• Use scopes to manage bandwidth
• E.g. cgroup scope, particular link/switch scope, …
• Each socket belongs to a set of scopes
• When sending a packet we update the bw utilization of the

socket’s scopes
• Congestion is determined by the most congested scope

Network Scopes Example

• Consider 2 flows from hosts 1 to host N belonging to same service

• Flow 1 could belong to scopes Red, Green & Blue
• Flow 2 belongs to scopes Orange, Green & Blue

Host
N

Host
1

Rack Switch

Backbone Router

Cgroup Egress scopes
(1 per cgroup per host)

Backbone scopes
(one per service)

Cgroup Ingress scopes
(1 per cgroup per host)

BW management

•We use a virtual queue to track bw use (per scope)
• Struct vqueue { int credit; /* in bytes */
• long long lasttime; /* in ns */
• };

•When sending a packet:
• Credit += credit_per_ns(currtime – lasttime, rate); // need to bound

• Credit -= wire_length_in_bytes(skb); // need to account for TSO

•Make decision based on credit and packet info
• Have to account for GRO and LRO packets

Current Congestion Algorithm

• If credit < Drop Threshold, then drop it (small packet buffer)

• If credit < Mark Threshold, then “mark it”
• ECN: mark it

• TCP – non-ECN: call tcp_cwr_enter() with a linear probability. The closer
credit is to Drop Threshold, the more likely to call cwr

• Virtual buffer to absorb bursts

• Drop threshold: 600pkts (reserved space for small packets)
• Mark threshold: 120pkts

0Mark
Threshold

Drop
Threshold

+-

Credit

CUBIC MARK FUNCTIONS

0

1

MT DT

CREDIT

Probability
of calling
enter_cwr()

0

1

MT DT

CREDIT

Probability
of calling
enter_cwr()

Current

Explore other
response functions

Issues

• Packets dropped by cgroup skb BPF program do not trigger call
to enter_cwr (cwnd reduction).
• Solution: helper BPF function to call tcp_enter_cwr
• Advantage: can make better decisions (probabilistic reductions)

• High tail latencies due to dropping packet and no more packets
in transit (packets_out = 0).
• For example, 1Gbps bound and 9 flows within rack => cwnd should be

less than one.
• When no more ACKs to trigger new packets, TCP depends on probe0

timer to resend. Default >= 200ms
• Solution: reduce probe timer to 20ms in these cases

Issues (2)

• Update of Credit and Lasttime is a critical section
• Needs to be protected
• Currently we do not have spinlocks in BPF programs

• Hack: spinlock the whole BPF program
• Fix 1: work on bpf_spinlock support is happening in parallel

• Fix 2: use data structure not requiring locks

experiments

• Only 1 scope (belonging to 1 cgroup)
• One hosts sends to another host in a rack
• One or more 1MB and 10KB RPCs
• 1 - 1MB
• 1 - 1MB and 1 - 10KB
• 4 - 1MB and 1 - 10KB
• 8 - 1MB and 1 - 10KB

• Limit rate by either by NRM or TC (htb)
• Introduce latency by netem on receiving host

Experiment 1Gbps rate
Test smaller probe timer, 1MB RPC Latency

• Reducing probe timer to 20ms reduces tail latency
significantly!
• From now on assume reduced probe timer

Flows Cubic Aggr BW Cubic 99.9% Lat DC-TCP Aggr BW DC-TCP 99.9% Lat

< timer < timer < timer < timer

1 496M 794M 250ms 84ms 953M 953M 9ms 9ms

2 856M 922M 260ms 44ms 962M 962M 22ms 21ms

5 935M 989M 465ms 92ms 1003M 1004M 52ms 48ms

9 999M 1006M 600ms 345ms 1029M 1020M 308ms 78ms

1Gbps Limit: Aggregate Rate and RTT

1Gbps Limit: 1MB and 10KB Rates

1Gbps Limit: 1MB RPC Latencies

1Gbps Limit: 10KB RPC Latencies

1 Gbps Limit Conclusions

• Similar aggregate rate (except for 1 flow Cubic)
• High RTTs when using TC (standing queue)
• Default output_limit_bytes is 260KB, at 1Gbps => 2ms

• TC is size unfair, 10KB RPCs get up to 20x less rate
• Cubic and Cubic-ecn have higher 1MB RPC tail latencies
• DC-TCP has much better 10KB tail latency (10x to 80x lower)

1 Gbps Limit & 10ms

Cong
Control qdisc

Rate
Control

1-flow
Rate (Mbps)

9-flow Aggr
Rate (Mbps)

1-flow 1-MB
99.9% Lat (ms)

9-flow 1-MB
99.9% Lat (ms)

Cubic HTB – fq HTB 441 858 58 85

Cubic HTB HTB 437 945 20 120

Cubic mq – fq NRM-BPF 410 915 46 141

Cubic mq – fqc NRM-BPF 754 944 12 218

DC-TCP mq – fq NRM-BPF 666 947 13 143

1 Gbps Limit & 10ms RTT Conclusions

• Best rate is achieved with Cubic, mq-fq_codel and NRM-BPF for
rate control
• However, 9-flow tail latency is higher at 218ms

• Using Cubic with HTB for rate control reduces tail latency (85 or
120ms)
• However, 1-flow rate decreases (to 441 from 760Mbps) and also

increases 1-flow tail latency (to 20 or 58ms from 12ms).

• Using DC-TCP with NRM-BPF for rate control produces results
between the previous 2: 666Mbps and 13/120ms tail latencies
• Note: There seems to be an issue with DC-TCP that may increase

latencies.

5Gbps Limit

Cong
Control

qdisc Rate
Control

Aggr Rate (Mbps) 1-MB 99.9% Lat (ms) 10-KB

1-flow 9-flow 1-flow 9-flow Rate (Mbps) 99.9% Lat (ms)

Cubic HTB HTB 4.5 4.8 2.0 18 35 3.7

Cubic mq-fqc NRM-BPF 4.2 4.7 6.5 113 243 0.8

Cubic-ECN mq-fqc NRM-BPF 4.4 4.2 4.7 227 196 1.1

DC-TCP mq-fqc NRM-BPF 4.6 4.9 4 27 295 0.8

5Gbps Limit Conclusions

• Cubic with HTB for rate control produce the best 1MB
results at the cost of 10KB results
• 9-flow 1MB: 4.8Gbps and 18ms tail latency
• 9-flow 10KB: 35Mbps and 3.7ms tail latency

• NRM-BPF produced much better 10KB results, but worst
1MB results
• Cubic 9-flow 1MB: 4.2Gbps and 113ms tail latency
• Cubic 9-flow 10KB: 243Mbps, 0.8ms tail latency
• DC-TCP 9-flow 1MB: 4.6Gbps, 27ms tail latency
• DC-TCP 9-flow 10KB: 295Mbps, 0.8ms tail latency

NRM Ingress

• Similar idea: use a virtual queue to track usage

•Want a mechanism to notify sender

• Otherwise need to depend on packet drops (bad)

• Options

• DC-TCP – uses ECN to notify sender

• Cubic – use a side channel to notify sender

• Use ECN markings (maybe ECT1 if ECT0 is default as in Linux)

• BPF program on other side does cwr

• Incast prevention does not drop, only mark so it can use

switch buffers

DCTCP Ingress

Limit Aggregate 99.9% Latency (ms) 50% Latency (ms)

(Mbps) #
Flows

Rate (Mbps) Retrans 1MB RPC 10KB RPC 1MB RPC 10KB RPC

1000 1 925 0 9.5 9.0

1000 2 922 0 19.0 0.7 13.0 0.2

1000 5 931 0 47.9 0.9 43.0 0.5

1000 9 945 1493 336.0 207.0 54.0 0.8

5000 1 4600 0 4.1 1.7

5000 2 4600 0 4.7 0.6 1.9 0.2

5000 5 4670 0 12.4 1.0 7.7 0.2

5000 9 4630 0 18.5 0.8 15.5 0.2

Conclusions

• Egress NRM prevents standing queues (i.e. smaller RTT) as
long as host average BW utilization is smaller than NIC rate.

• As a result smaller RPCs have smaller latencies

• Using BPF provides great flexibility and is a great platform
for experimentation.

Future work

• Explore different marking algorithms (response functions)
• Explore using connection RTT in marking algorithm
• Test multiple scopes
• Multiple cgroups (each flow only has one scope)

• Multiple scopes per flow

• Test concurrent flows with different RTTs
• Test concurrent flows with different TCP variants
• Ingress NRM with sender notifications

