Using eBPF as an Abstraction for Switching

Nicolaas Viljoen, Jakub Kicinski
Netronome Systems
Santa Clara, United States
nick.viljoen @netronome.com, jakub.kicinski @netronome.com

Abstract

eBPF (extended Berkeley Packet Filter) [1] has been shown to
be a flexible kernel construct used for a variety of use cases,
such as load balancing [2], intrusion detection systems (IDS)
[3], tracing [4] and many others [5]. One such emerging use
case revolves around the proposal made by William Tu for the
use of eBPF as a data path for Open vSwitch [6]. However,
there are broader switching use cases developing around the
use of eBPF capable hardware. In this paper the focus will be
around the use of a the multi-host NIC platform as the first con-
sumer for this type of abstraction, however container switching
and isolation will also be touched upon.

Keywords

eBPF, TC, XDP, offload, Switchdev, fully programmable
hardware

Introduction

Switching abstractions within the kernel are not a new
concept. In 2014 Jiri Pirko introduced switchdev [7]. This
provided an in-kernel driver model for the offload of the
forwarding plane, and has been applied to OVS offload as
well as to switch based Linux [8]. However, previously the
forwarding plane has been handled mostly with stateless
L2/L3 forwarding. This paper will use the concept of a
multihost NIC to motivate the extension of this functionality
further.

First this paper will describe the work which is currently
upstream. Jakub Kicinski introduced the use of switchdev
for the multihost NIC platform, followed by the introduction
of the concept of qdisc offload using RED [9]. Thereafter the
next steps for the extension of the offload will be introduced.
This will involve generalising the qdisc offload and introduc-
ing simple classifiers, such as u32. Finally the concept of
multihost eBPF offload will be covered. This will include
changes in the general offload architecture as well as the use
of cls_bpf and XDP offload for switching functionality.

The Multi-Host NIC Concept

Many datacenter operators are starting to utilise multihost
platforms, both within large datacenters and small edge data-
centers/POPs [10]. This in turn has meant the advent of a new

type of networking device, the multi-host NIC. The multi-
host NIC is in effect a small L2 switch which provides users
the ability to switch traffic to the correct PCle device attached
to the NIC.

Host 2

L2 Switch

@ Network device

PHY/MAC

Figure 1: Standard Multi-host system today-Note the lack of
switch representers

This however brings up the question of how to represent
these devices. The current approach used by most vendors
is to represent the NIC to each host as a single netdev. Any
statistic related to the host are linked to that netdev. In this
model there is no concept of the NIC as a switch. While there
are certainly many merits to this model, it does have some
shortcomings.

Debugging: Being unaware of what is occurring in the
switch and on the other hosts when sharing a device such
as a NIC makes it difficult for the user to be able to under-
stand the origin of certain networking problems. Adding
counters to be able to monitor the physical port does as-
sist with this, however it does not provide the granularity
usually associated with a netdev.

Queueing Discipline: The multihost NIC may be a bottle-
neck in some circumstances, being able to implement sen-
sible methods of queueing to avoid unexpected reductions
in throughput or latency are essential.

Offloads: Being able to link offloads to either the ingress
of the host, the egress of the switch or to the entire set
of hosts may be significantly beneficial in certain circum-
stances due to the expansion of use cases as well as per-

formance, code store or FPGA gate constraints in network
processing elements.

Host 1

Pressure
Here y
Host 0

L2 Switch

Host 3

i

PHY/MAC

Figure 2: An example of the types of issue which may be
challenging to debug without switch representers

Through the use of switchdev as a representation of the
NIC, the above shortcomings can be mitigated. As switchdev
allows for the use of representers at both the physical ports
and the logical switch ports, this allows for the attachment of
qdiscs and other offloads. In terms of debugging, the abil-
ity to have a full set of statistics at each of these points may
be cleaner than adding significant amounts of counters to a
single netdev. Debugging may also be assisted through the
concept of read only netdevs, which will be explored in the
future work section.

Current Work: Switchdev and Basic Qdisc
Offload

This section covers the work which has already been up-
streamed by the team-Jakub Kicinski deserves the majority
of the credit for this work. It provides an overview of the me-
chanics behind the application of switchdev and simple qdisc
offload.

The switchdev based multihost architecture

To represent a switch, representers are created for each of the
physical ports, as well as the logical switch ports to the hosts.
This is combined with the representers for the host vnic’s.
The diagram below shows the general layout.

Host 3

L2 Switch

PHY/MAC

Figure 3: Switchdev based multihost architecture

The Netronome Flow Processor Firmware

The NFP’s architecture has been previously outlined [11].
This has not significantly changed. The only key additions
are the concept of a queue manager flow processing core and
a PF mailbox. The queue manager manages the offloaded
egress queueing disciplines and ensures that throughput and
latency QoS is handled as expected. The switching is han-
dled by the main application flow processing cores. Much
of the total work done for the egress processing requires in-
order handling, therefore the queue manager is reached after
passing through the reorder block. The PF mailbox is used
for communication which is not networking or port related.

4.RX

Host

NIC

4.PCIE

31aM PCI
Threads credits

Main Memory 3.aM
Ingress + Switching
dcache
Egress 2. Reorder E
Processing Fi
1.FPC
MAC ingress gzlA dcache

Figure 4: Netronome FW life of a packet-wire to host

Driver Architecture
The driver setup consists of three stages:

a) Initialisation
b) Switching mode
¢) qdisc offload

Initialisation The initialisation occurs at boot time when
the PCI probe occurs. This process consists of two key steps,
app initialisation and vnic allocation.

App Initialisation The concept of the app is one used
widely within the NFP driver. App abstractions are designed
to match certain flavours of firmware and allow ease of in-
frastructure reuse. For example, if the firmware detected on
the NIC is multi-host capable, then the .init function pointer
is directed at the abm_init code in nfp/src/abm. ABM denotes
advanced buffer management, which is the overarching term
currently given to the design of the multihost NIC architec-
ture with qdisc offload.

const struct nfp_app-type app.abm = {
.id = NFP_APP_ACTIVE_.BUFFER_.MGMT.NIC,
.name = “abm”,

Linit
.clean

= nfp.abm_init ,
= nfp_abm_clean ,
.vnic_alloc
.vnic_free

= nfp_abm_vnic_alloc ,
= nfp_abm_vnic_free ,
.port_get_stats
.port_get_stats_count
.port_get_stats_strings

nfp_abm_port_get_stats ,
nfp_abm_port_get_stats_count ,
nfp_abm_port_get_stats_strings ,

.setup._tc = nfp_abm_setup_tc ,

.eswitch_mode_get
.eswitch_mode_set

nfp_abm_eswitch_mode_get ,
nfp_abm_eswitch_mode_set ,

.repr_get = nfp_abm._repr_get ,
Listing 1: Current app abstraction layer for the abm app

The abm_init function carries out the following functional-
ity
a) Checks that eth table exists and BAR symbols are correctly
configured. The eth table is required to ensure that enough

MAC:s are assigned to the device to be able to function as
a multihost NIC

b) Create the nfp_abm structure: This structure contains a
back pointer to the nfp_app, the pf id, as well as the eswitch
mode and data about queue levels/stats.

c) Ensures that at boot time legacy mode is enabled to en-
sure compatibility-this is done through the disabling of the
queue manager and other modified NIC egress processing
elements

d) Allocate representors for all of the vnics which could be
enabled in switchdev mode.

vNICs Allocation The second key section of the initialisa-
tion sequence is the vnic allocation:

a) Sets up the nfp_abm_link structure, the nfp_abm_link struc-
ture is what is used to link offloaded qdiscs to the represen-
tor/network device.

struct nfp_abm_link {
struct nfp_abm xabm;
struct nfp_net *vnic;
/xsnip x/
struct nfp.red_qdisc =xqdiscs;

}s
Listing 2: Key elements within struct nfp_abm_link

b) As the system is multi-host, ensure that the MAC/PHY
state does not follow any of the ports.

¢) set the vnic MAC addresses

At this stage the shared nfp_abm structure is set up as well
as abm_link for the vnic (contained within struct nfp_net’s pri-
vate application specific data).

Switching Mode The next step is the setting of the switch-
ing mode, this is triggered by the .eswitch_mode_set call-
back, also contained within the nfp_app structure. If setting
switchdev mode, what this process does is that it spawns a
PORT and PF representer for each of the vnics. Spawning
consists of a number of steps:

probe

nfp_net_pci_probel

‘ nfp_app.c ‘

ofp_mbox_ cmd)

Figure 5: Initialisation

a) Create the netdev

b) Allocate the queues to the netdev. Note that for a physcial
port this is currently a single queue.

¢) Link the netdev to the representer

d) Attach the link to the representer in the app specific space
e) Initialise the port structure

f) Initialise the representer

2) Add the representer to the list of representers

h) Initialise queue manager on the NIC, ensuring that the FW
is ready for offloaded qdiscs

At this point the representers are all attached to the abm_link
structures, this allows offloaded RED qdiscs to be easily at-
tached. Note there are also other commands to get/set the size
of the shared buffer pool on the NFP for use by the RED qdisc
as shown in the figure below.

Devlink

nfp_shared_buf.c

struct nfp_abm
struct nfp_abm_link
' x

Figure 6: Entering switchdev mode

Qdisc Offload The qdisc offload works through the
.ndo_setup_tc call. If looking to use the RED offload, the
nfp_abm _ctrl_set_q_1vl() and other associated functions are
used to interact with the mailbox abi. This sets the queue lev-
els and handles interaction with the firmware. As previously
stated the nfp_abm_link structure is used to keep track of the
qdiscs. This is through the nfp_red_qdisc structure. Statisitics
are also a key feature, through the use of tc it is possible to
maintain access to the standard qdisc statistics, which in this
case are extremely helpful for monitoring of state of the qdisc

via backlogs, drops etc.
struct nfp_red_qdisc {
u32 handle;
struct nfp_alink_stats stats;
struct nfp_alink_xstats xstats;
}s
Listing 3: the nfp_red_qdisc contained within the
nfp_abm_link structure

tc qdisc
et

sch_red.c/sch_mg.c

Figure 7: Qdisc offload

Next Steps: Extending the egress representer
architecture

As the above section shows, the current upstream code pro-
vides a model for offloading the RED qdiscs. This section is
focused on how this should be generalised to more types of
qdiscs, including clsact, allowing the use of classifiers such
as u32.

Generalising Qdisc offload

To allow more forms of qdisc offload, the first step is to cre-
ate a more generic qdisc structure to be used. This structure
would contain an enum to determine the type, as well as a
union for qdisc type specific features. It would also be im-
portant to ensure that the qdisc structure is associated with a
specific netdev, as different netdev’s may be able to offload
different types of qdiscs. Therefore being able to use this for
checks when new child qdiscs are added to a chain is impor-
tant.

struct nfp_qdisc {
struct net_device xnetdev;
enum nfp_qdisc_type type;
/xsnip x/

struct nfp_qdisc =**children;

/x snip x/

union {
/% NFP_QDISC.MQ x/

struct {
struct nfp_alink_stats stats;

struct nfp_alink_stats prev_stats;
} mq;
/* TC_SETUP_QDISC_RED x/
struct {
bool ecn;
u32 threshold:

struct nfp_alink_stats stats;
struct nfp_alink_stats prev_stats;
struct nfp_alink_xstats xstats;
struct nfp_alink_xstats prev_xstats;
} red:

}s

}s
Listing 4: Proposed generic nfp_qdisc structure
The clsact Qdisc

With the introduction of this infrastructure, it may be of sig-
nificant advantage to be able to offload classifiers, allowing
packets to be steered to the correct qdiscs. The addition of
a classifier such as u32 allows the utilisation of features like
priority maps which could be used for qdiscs such as GRED.
This can easily be handled within the current app abstraction.

tc qdisc

teqdisc add (ma/red)

tc filter

44 (632)

Figure 8: The addition of a cls_u32 qdisc

This feature provides a powerful tool, not only to identify
different priorities of traffic in a stateless manner, but also to
provide more efficient ways to handle QoS in a heterogenous
congestion control environment.

Looking Further: Future Work-Multihost BPF
Offload

This section covers work the team is looking at further into
the future. The main topic to be covered relates to the archi-

tectural changes required to support multihost switch based
BPF offload, including relevant firmware and JIT modifica-
tions, cls_bpf offload and finally XDP offload.

Firmware and BPF JIT

There are a number of key changes that would need to be
made to the way offload is done currently to be able to use
offload effectively within a multihost environment. Firstly,
as most offload devices will have limited resources available,
such as gates or code store space, it makes sense to be able
to share programs between different ports. This could either
be done with a simple jump table in the underlying logic, or
potentially through the use of a small BPF program in and
of itself. This architecture would also allow for easy support
of tail calls and also allow circular dependency of programs.
There may potentially be some advantages to ensuring this
mechanism is as generic as possible to avoid architecture spe-
cific quirks.

Returns the number of
programs to jump to and
their locations

Port | Progs

Va T

Reorder

~__

Lookup in jump table based
on entry port

\\J, /_\T'ail calls

/I_I\HEIZI/I/\I\IHII\

Flow Processing Core

Preclassifiers used to isolate
flow processing cores per host

eBPF Progs Dynamically Loaded Helpers

Preclassifier

Figure 9: Proposed flexible architecture with jump table to
manage the reuse of BPF programs

Secondly, there may be cases where it is important to iso-
late the resources of a particular host. To ensure this isolation,
it is important to be able to isolate certain flow processing
cores to handle traffic associated with that host. Finally, as
will be covered further in the section below. It will be im-
portant for the NIC to have a concept of which type of port
the program is attached to as there are now multiple types
of representers which the program could be attached to, not
only physial port representers, but it may also be attached to
the logical switch port ingress as a XDP program, or to it’s
egress as a cls_bpf program.

cls_bpf and Switchdev

The next steps section described how to offload simple state-
less classification such as cls_u32. However for more com-
plex classifiers such as bpf, there is currently a separate app
abstraction. The first step would be to move this to the gen-
eralised infrastructure. This would need to be combined with
the use of the pf id to be able to ensure that the jump table or
other similar structure is correctly setup. This program would
then be DMA’d into the NIC at the specified offset as is done
within the single host case today. This is then controlled via

the control message cmsg interface and runs in the out-of or-
der FPCs as per normal.

prog.o

verifier.c offload.c
[offoade |

cls_bpf.c/cls_u32.c sch_ingress.c/sch_red.c/sch_mq.c

|

Figure 10: Incorporation of the eBPF infrastructure in ABM

The use of BPF programs on the egress of the logical
switch ports means that stateful quality of service may be pos-
sible to deliver within a multihost environment. For example,
high throughput connections with long RTTs may be identi-
fied and could be handled in a manner that is more conducive
to the large window sizes required for their handling, such
as larger thresholds or different congestion behaviours-drop,
mark, buffer etc.

XDP in the Multihost Case

An addition to this architecture which is being explored is the
possibility of using offloaded XDP to create a fully flexible
datapath via the use of bpf_redirect() to steer traffic. There
are however some obvious problems which would arise;

a) XDP is an RX exclusive hook: This means that a single
netdev would not be able to provide bidirectional switch-
ing.

b) Heterogenous architecture support is nascent: Many switch

architectures may not be flexible enough to be used with
XDP, therefore this may require further work

¢) Security: Who would be trusted to add programs to an in-
terface shared by the four endpoint hosts?

However this is a series of problems which are being ad-
dressed in the community. William Tu is currently looking at
the development of the P4-XDP compiler infrastructure[13],
which may provide some intriguing insights into heteroge-
nous processing. Jakub Kicinski has also presented some ini-
tial proposals in the BPF micro conference for the use of BPF
as a heterogenous processing ABI[14]. Through the use of
switchdev it is possible to provide an ingress hook at both the
logical switch port and at the physical port representer. There
are also constantly problems which are being addressed; For
example, until recently XDP had no infrastructure for access
to the FIB table, therefore would waste unnecessary resources
updating maps duplicating already established functionality if
attempting to provide switching functionality. David Ahern
has added this functionality and will discuss providing BPF

access to the FIB table at LPC 2018[12].

The one problem which is not easily addressable is the ques-
tion of whom would be allowed to add functionality on the
external port. Currently the assumption would have to be that
the hosts are all trusted if this functionality is enabled. For
non-secure cases platforms such as traditional switches or so-
called ’Bare-Metal NICs’, both of which contain a large con-
troller CPU, may be able to provide a solution.

Qdisc (RED)

i

Figure 11: Overall architectural goal-BPF defined datapath

This would allow an architecture such as that shown above,
ensuring the end user has significantly more granular control
over the entire the NIC datapath through upstream Linux than
is possible today. This could then also be used by others with
programmable switch or multi-host NIC hardware.

Statistics

As described previously, one of the key advantages of the
switchdev based architecture is that it provides a conceivable
interface to providing visibility into what is occurring on the
entirety of the NIC by providing read only visibility to all the
egress ports of the logical switch. This would allow prob-
lems such as internal bottlenecks in the switch as described
in figure 2 to be easily identified.

L2 Switch

1)
—

Configurable
from host 0

PHY/MAC

Figure 12: Read only representers ensure ease of debugging

Conclusion

This paper has laid out a proposal for an architecture which
can be used to define a fully flexible data path for a mutli-
host NIC using the abstraction provided by switchdev com-
bined with the offloading of qdiscs, stateless classifiers and
multiple bpf hooks associated with multiple ports on a log-
ical switch. Currently the switchdev architecture and qdisc
offload has been upstreamed and the next steps are in devel-
opment, however further work built on top of that currently
described by others [12, 14] could provide the potential for
upstream BPF defined pipelines more generally within het-
erogenous architectures including, NICs and switches.

References

[1] Starovoitov, A. et al., Linux Socket Filtering aka Berke-
ley Packet Filter (BPF)

Linux Kernel Documentation.

[2] Shirikov, N., Dasineni R., Open-sourcing Katran, a
scalable network load balancer
https://code.fb.com/open-source/open-sourcing-katran-
a-scalable-network-load-balancer

[3] Yates, T., Using eBPF and XDP in Suricata,
https://lwn.net/Articles/737771/

[4] Gregg, B., Linux eBPF Tracing Tools
http://www.brendangregg.com/ebpf.html

[5] Borkmann, D., On Getting the TC Classifier Fully Pro-
grammable with cls_bpf, NetDev 1.1.

[6] Tu, W., Patch set for eBPF based OVS
https://mail.openvswitch.org/pipermail/ovs-dev/2018-
June/348521.html

[7] Pirko J., Switchdev-No More SDK NetDev 1.1.

[8] Ahern, D., Shrijeet N., Building a Better NOS with
Linux and switchdev
https://www.files.netdevconf.org/d/cb35a26e23e744318860

[9] Kicinski J. Patch set for initial multi-host NIC
switchdev work
https://lists.openwall.net/netdev/2018/05/22/33

[10] Chong, D., Bryan J., Twin Lakes:
Yosemite V2
https://www.opencompute.org/files/Intel-FB-
TwinlakesBryan-Chong-OCP18.pdf

[11] Kicinski J., Viljoen, N. XDP Hardware Offload: Cur-
rent Work, Debugging and Edge Cases
https://www.netdevconf.org/2.2/papers/viljoen-
xdpoffload-talk.pdf

[12] Ahern, D. Leveraging Kernel Tables with XDP
https://www.linuxplumbersconf.org/event/2/contributions/93/

[13] Tu, W., PAC-XDP: Programming the Linux Kernel
Forwarding Plane Using P4
https://www.linuxplumbersconf.org/event/2/contributions/97/

1S Server for

[14] Kicinski J. Using eBPF as a heterogeneous processing
ABI
http://vger.kernel.org/Ipc-bpf.html

