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Outline
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● An history of 2 datapaths
● The testing scenario 
● Performance analysis, recent and current status
● Will eBPF save the world?
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Why we need 2 in kernel OVS datapath?

● “Old” kernel OVS datapath
○ first “fast” OVS datapath implementation
○ Feature-complete

● TC S/W:
○ Created to allow for H/W offload
○ Considered slower
○ Lacks some features - conntrack
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Let’s see the numbers
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How about scaling?
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Topmost perf offenders for vhost (1 queue)

 5.49%  vhost_get_vq_desc
 4.99%  skb_release_data
 4.83%  __qdisc_run
 4.68%  tun_do_read
 4.36%  __skb_flow_dissect
 3.81%  _copy_to_iter
 3.76%  translate_desc
 3.36%  iov_iter_advance
 3.19%  kmem_cache_free
 3.18%  ixgbe_xmit_frame_ring
 2.79%  tun_get_user
 2.72%  handle_rx
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Why are we so slow? Can perf tell us?

Not entirely obvious...

Topmost perf offenders for vhost (16 queues)

           10.15%  tun_do_read
 8.77%  skb_release_data
 7.72%  vhost_get_vq_desc
 6.22%  _copy_to_iter
 5.41%  __slab_free
 4.86%  handle_rx
 4.26%  vhost_net_buf_peek
 4.26%  translate_desc
 4.23%  kmem_cache_free
 3.81%  __check_object_size
 3.40%  iov_iter_advance
 2.65%  skb_release_head_state
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More help from perf

vhost forwarding is asymmetric! And fixing it is simple: apply the same limits to both 
handle_rx() and handle_tx(). Implemented in the 4.18 release cycle

call-graph accounting for vhost (16 queues)

 100.00%          vhost-<pid>
 |
  --        |--87.85%--ret_from_fork
           |      kthread
           |      vhost_worker
           |      |
           |--79.25%--handle_rx

     |--55.45%--tun_recvmsg
[...]
                         | --8.60%--handle_tx

|
|--7.42%--tun_sendmsg

 [...]
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Did we improve?
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Can we do any better?

4.18 with OVS backend

 7.50%  masked_flow_lookup
               5.02%  ixgbe_xmit_frame_ring
               4.20%  vhost_get_vq_desc
               3.89%  iov_iter_advance
               3.18%  translate_desc
               2.92%  pfifo_fast_dequeue

2.83%  tun_build_skb.isra.57
2.81%  tun_get_user
2.09%  __dev_queue_xmit
1.99%  handle_tx
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Again, not entirely obvious… let’s look towards the bottom...

[...]
               0.71%  skb_clone

With TC backend

 5.08% ixgbe_xmit_frame_ring
 4.63% vhost_get_vq_desc
 4.37% skb_release_data
 3.86% translate_desc
 3.00% iov_iter_advance
 2.94% tun_get_user
 2.89% __skb_flow_dissect
 2.76%  memcmp
 2.54% pfifo_fast_dequeue
 2.17%  rhashtable_jhash2

Topmost perf offender for vhost on Linux 4.18
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Killing bad clones

● In the TC S/W datapath packets are forwarded via the TC 
act_mirred action

- It clones the skb and return a control action. The caller acts on the 
original skb accordingly

- The TC S/W datapath uses DROP as the control action. We can avoid 
the clone and forward directly the original skb

- Implemented in the 4.19 release cycle
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The current status
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Things intentionally omitted - so far
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● With more complex ruleset TC will hit a greater retpoline overhead
○ “listification” is hard to apply here, will not help with many flows

● Some specific TC actions do not scale well (per action spin_lock)
○ removal is a WIP - thanks to Davide Caratti

● We could almost double the tput using 2 vhost threads per virtio 
net queue (rx and tx)

○ That is almost alike using multiple virtio_net queues
● Still far away from line rate and carrier grade reqs (15x), less far 

from bypass solutions (3x)
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Will eBPF save us?
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● OVS support for XDP is under development. Is that a game 
changer? Let’s perf it

○ Use a simple XDP program parsing ingress packet up to L3 and 
forwarding it using an user configured map

○ Nowhere near a complete solution, hopefully an upper bound of what 
we should expect with ovs-XDP
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Will eBPF save us? [II] 
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A glance at the future
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● XDP eBPF backend for OVS is not there yet
○ And next-to-come AF_XDP is possibly more interesting from 

performance PoV
● UDP GRO for forwarded packet can someday land into the kernel 

datapath.
○ Will help only with scenarios using a limited number of flows.
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