
Paolo Abeni, Davide Caratti, Eelco Chaudron,
Marcelo Ricardo Leitner - Red Hat

LPC, Vancouver 2018

 TC SW datapath: a performance analysis

INSERT DESIGNATOR, IF NEEDED

Outline

2

● An history of 2 datapaths
● The testing scenario
● Performance analysis, recent and current status
● Will eBPF save the world?

INSERT DESIGNATOR, IF NEEDED3

Why we need 2 in kernel OVS datapath?

● “Old” kernel OVS datapath
○ first “fast” OVS datapath implementation
○ Feature-complete

● TC S/W:
○ Created to allow for H/W offload
○ Considered slower
○ Lacks some features - conntrack

INSERT DESIGNATOR, IF NEEDED4

The PVP test scenario
DUT

NIC

OVS

Loopback VM

Virtio NIC

testpmd

Traffic
Generator

INSERT DESIGNATOR, IF NEEDED

Let’s see the numbers

INSERT DESIGNATOR, IF NEEDED

How about scaling?

INSERT DESIGNATOR, IF NEEDED

Topmost perf offenders for vhost (1 queue)

 5.49% vhost_get_vq_desc
 4.99% skb_release_data
 4.83% __qdisc_run
 4.68% tun_do_read
 4.36% __skb_flow_dissect
 3.81% _copy_to_iter
 3.76% translate_desc
 3.36% iov_iter_advance
 3.19% kmem_cache_free
 3.18% ixgbe_xmit_frame_ring
 2.79% tun_get_user
 2.72% handle_rx

7

Why are we so slow? Can perf tell us?

Not entirely obvious...

Topmost perf offenders for vhost (16 queues)

 10.15% tun_do_read
 8.77% skb_release_data
 7.72% vhost_get_vq_desc
 6.22% _copy_to_iter
 5.41% __slab_free
 4.86% handle_rx
 4.26% vhost_net_buf_peek
 4.26% translate_desc
 4.23% kmem_cache_free
 3.81% __check_object_size
 3.40% iov_iter_advance
 2.65% skb_release_head_state

INSERT DESIGNATOR, IF NEEDED8

More help from perf

vhost forwarding is asymmetric! And fixing it is simple: apply the same limits to both
handle_rx() and handle_tx(). Implemented in the 4.18 release cycle

call-graph accounting for vhost (16 queues)

 100.00% vhost-<pid>
 |
 -- |--87.85%--ret_from_fork
 | kthread
 | vhost_worker
 | |
 |--79.25%--handle_rx

 |--55.45%--tun_recvmsg
[...]
 | --8.60%--handle_tx

|
|--7.42%--tun_sendmsg

 [...]

INSERT DESIGNATOR, IF NEEDED

Did we improve?

INSERT DESIGNATOR, IF NEEDED

Can we do any better?

4.18 with OVS backend

 7.50% masked_flow_lookup
 5.02% ixgbe_xmit_frame_ring
 4.20% vhost_get_vq_desc
 3.89% iov_iter_advance
 3.18% translate_desc
 2.92% pfifo_fast_dequeue

2.83% tun_build_skb.isra.57
2.81% tun_get_user
2.09% __dev_queue_xmit
1.99% handle_tx

10

Again, not entirely obvious… let’s look towards the bottom...

[...]
 0.71% skb_clone

With TC backend

 5.08% ixgbe_xmit_frame_ring
 4.63% vhost_get_vq_desc
 4.37% skb_release_data
 3.86% translate_desc
 3.00% iov_iter_advance
 2.94% tun_get_user
 2.89% __skb_flow_dissect
 2.76% memcmp
 2.54% pfifo_fast_dequeue
 2.17% rhashtable_jhash2

Topmost perf offender for vhost on Linux 4.18

INSERT DESIGNATOR, IF NEEDED

Killing bad clones

● In the TC S/W datapath packets are forwarded via the TC
act_mirred action

- It clones the skb and return a control action. The caller acts on the
original skb accordingly

- The TC S/W datapath uses DROP as the control action. We can avoid
the clone and forward directly the original skb

- Implemented in the 4.19 release cycle

INSERT DESIGNATOR, IF NEEDED

The current status

12

INSERT DESIGNATOR, IF NEEDED

Things intentionally omitted - so far

13

● With more complex ruleset TC will hit a greater retpoline overhead
○ “listification” is hard to apply here, will not help with many flows

● Some specific TC actions do not scale well (per action spin_lock)
○ removal is a WIP - thanks to Davide Caratti

● We could almost double the tput using 2 vhost threads per virtio
net queue (rx and tx)

○ That is almost alike using multiple virtio_net queues
● Still far away from line rate and carrier grade reqs (15x), less far

from bypass solutions (3x)

INSERT DESIGNATOR, IF NEEDED

Will eBPF save us?

14

● OVS support for XDP is under development. Is that a game
changer? Let’s perf it

○ Use a simple XDP program parsing ingress packet up to L3 and
forwarding it using an user configured map

○ Nowhere near a complete solution, hopefully an upper bound of what
we should expect with ovs-XDP

INSERT DESIGNATOR, IF NEEDED

Will eBPF save us? [II]

15

INSERT DESIGNATOR, IF NEEDED

A glance at the future

16

● XDP eBPF backend for OVS is not there yet
○ And next-to-come AF_XDP is possibly more interesting from

performance PoV
● UDP GRO for forwarded packet can someday land into the kernel

datapath.
○ Will help only with scenarios using a limited number of flows.

THANK YOU

