- redhat.

TC SW datapath: a performance analysis

Paolo Abeni, Davide Caratti, Eelco Chaudron,
Marcelo Ricardo Leitner - Red Hat

LPC, Vancouver 2018

Outline

« An history of 2 datapaths

. The testing scenario

. Performance analysis, recent and current status
. Will eBPF save the world?

Q redhat.

Why we need 2 in kernel OVS datapath?

. “Old” kernel OVS datapath
o first “fast” OVS datapath implementation

o Feature-complete

. TCS/W:
o Created to allow for H/W offload

o Considered slower
o Lacks some features - conntrack

Q redhat.

The PVP test scenario

Traffic
Generator

Loopback VM

=

Virtio l\y

Q redhat.

Let’s see the numbers

PPS

900000

800000

700000

600000

500000

400000

300000

200000

100000

PVP tput with Linux 4.17, 1 ingress queues

OVS s
TC s

Q redhat.

How about scaling?

PPS

900000

800000

700000

600000

500000

400000

300000

200000

100000

PVP tput with Linux 4.17, 16

ingress queues

OVS s
TC s

Q redhat.

Why are we so slow? Can perf tell us?

Topmost perf offenders for vhost (1 queue)

5.49% vhost_get_vq_desc
4.99% skb_release_data
4.83% __qdisc_run
4.68% tun_do_read
4.36% __skb_flow_dissect
3.81% _copy_to_iter
3.76% translate_desc
3.36% iov_iter_advance
3.19% kmem_cache_free
3.18% ixgbe_xmit_frame_ring
2.79% tun_get_user
2.72% handle_rx

Not entirely obvious...

Topmost perf offenders for vhost (16 queues)

10.15%
8.77%
7.72%
6.22%
5.41%
4.86%
4.26%
4.26%
4.23%
3.81%
3.40%
2.65%

tun_do_read
skb_release_data
vhost_get vqg_desc
_copy_to_iter
__slab_free
handle_rx
vhost_net_buf peek
translate_desc
kmem_cache_free
__check_object_size
iov_iter_advance
skb_release_head_state

Q redhat.

More help from perf

call-graph accounting for vhost (16 queues)

100.00% vhost-<pid>
|
- [--87.85%--ret_from_fork
| kthread

| vhost_worker

|

|
[--79.25%--handle_rx

[--565.45%--tun_recvmsg
| --8.60%--handle_tx

|
[--7.42%--tun_sendmsg

vhost forwarding is asymmetric! And fixing it is simple: apply the same limits to both
handle_rx() and handle_tx(). Implemented in the 4.18 release cycle

Q redhat.

Did we improve?

PPS

900000

800000

700000

600000

500000

400000

300000

200000

100000

PVP tput with Linux 4.18, 16 ingress queues

OVS mmm
TC s

Q redhat.

Can we do any better?

Topmost perf offender for vhost on Linux 4.18

4.18 with OVS backend

7.50% masked_flow_lookup
5.02% ixgbe_xmit_frame_ring
4.20% vhost_get_vqg_desc
3.89% iov_iter_advance
3.18% translate_desc

2.92% pfifo_fast_dequeue
2.83% tun_build_skb.isra.57
2.81% tun_get_user

2.09% __dev_queue_xmit
1.99% handle_tx

Again, not entirely obvious

With TC backend

5.08% ixgbe_xmit_frame_ring
4.63% vhost_get_vqg_desc
4.37% skb_release_data
3.86% translate_desc

3.00% iov_iter_advance
2.94% tun_get_user

2.89% __skb_flow_dissect
2.76% memcmp

2.54% pfifo_fast_dequeue
2.17% rhashtable_jhash2

... let’s look towards the bottom...

[...]
0.711% skb_clone

Q redhat.

Killing bad clones

. Inthe TC S/W datapath packets are forwarded via the TC
act_mirred action
It clones the skb and return a control action. The caller acts on the
original skb accordingly
The TC S/W datapath uses DROP as the control action. We can avoid
the clone and forward directly the original skb
Implemented in the 4.19 release cycle

INSERT DESIGNATOR, IF NEEDED

Q redhat.

The current status

PPS

900000

800000

700000

600000

500000

400000

300000

200000

100000

PVP tput 4.18 vs 4.19-rc6, 16

ingress queues

0VS-4.19.0-fc6 m——
TC-4.19.0-fc6 mmm—
TC-4.18 ===

12

Q redhat.

13

Things intentionally omitted - so far

With more complex ruleset TC will hit a greater retpoline overhead
o “listification” is hard to apply here, will not help with many flows
Some specific TC actions do not scale well (per action spin_lock)
o removal is a WIP - thanks to Davide Caratti
We could almost double the tput using 2 vhost threads per virtio
net queue (rx and tx)
o Thatis almost alike using multiple virtio_net queues
Still far away from line rate and carrier grade regs (15x), less far

from bypass solutions (3x)

Q redhat.

14

Will eBPF save us?

« QOVS support for XDP is under development. Is that a game
changer? Let’s perf it
o Use asimple XDP program parsing ingress packet up to L3 and
forwarding it using an user configured map
o Nowhere near a complete solution, hopefully an upper bound of what
we should expect with ovs-XDP

Q redhat.

Will eBPF save us? [Il]

KPPS

1200

1000

800

600

400

200

PVP tput with Linux 4.19.0-rc6, 16 queues

TC
XDP mmmm

15

Q redhat.

16

A glance at the future

. XDP eBPF backend for OVS is not there yet
o And next-to-come AF_XDP is possibly more interesting from
performance PoV
. UDP GRO for forwarded packet can someday land into the kernel
datapath.
o Will help only with scenarios using a limited number of flows.

Q redhat.

- redhat.

THANK YOU

