
XDP: 1.5 years in production. Evolution and
lessons learned.
Author: Nikita V. Shirokov

ABSTRACT

BPF and XDP have started a new era in kernel's programability for networking subsystem. Before the only way to do fast
networking in Linux was to use kernel bypass technologies, such as DPDK[1] or NetMap[2]. There are lots of
examples[3] of how XDP could be used, or reports of some small scale test deployments[4], but there is a lack of good
examples of how XDP is being used in a big scale production network. This paper/presentation is trying to address this,
by showing how some of BPF helpers could be used in network related code as well as explains what limitations could
arise during operation of XDP and how these limitations could be overcome.

INTRODUCTION

Every packet toward facebook.com has been processed by XDP enabled application since May of 2017. That gave us
an unique experience of running XDP on large scale production network and prompted us to implement and improve
existing BPF infrastructure. During the operation we also saw shortcomings and lack of tooling around XDP, which was
not obvious/not thought about when we started our journey. Running XDP in production allowed us to measure and
profile most of the BPF helpers and gave us insights of how they behave under real load/traffic.

OVERVIEW

The XDP enabled application which we have started to run in May of 2017 is a L4 load balancer([5] on why we need
this and how it's used. it's an open source solution[6]). In a nutshell it's a networking node which:

1.

2.

3.

4.

5.

receives a packet from the external user

doing stateful lookup in connection's table, to check if it saw a packet from the same session (described by “5
tuple”: (source ip, destination ip, source port, destination port, protocol)). the result of this lookup is either a
MISS or a HIT.

in case of HIT matched value is an ip address of end node, where this packet is redirected.

in case of MISS there is additional logic to determine where the packet needs to be sent.

last step is to encapsulate original packet from the user into another IP header (that allow us to preserve original
packet and implement DSR[7] schema for load balancing)

Picture 1 shows in a schematic view of L4 load balancer operation

http://facebook.com/

Picture 1: L4 load balancer at a glance

As for any stateful service, the worse case scenario is when it is under flood (every arrived packet belongs to a new
connection, 0% HIT in connection's table), and this is what we were optimizing our code for (because if it is works
good under such extreme conditions, it would also work great under day to day traffic load, which, in our environment,
has connection's table HIT ratio close to 100%).

IMPLEMENTATION

To be able to do encapsulation, new bpf_xdp_adjust_head[8] helper was introduced. Before having this helper, XDP
was working in a way, that NIC's driver were allocating page per packet and packet was written in the beginning of the
page (Picture 2). Unfortunately such layout didn't allow any room for the encapsulation

Picture 2: initial XDP packet's layout/allocation

With introduction of bpf_xdp_adjust_head drivers starts to write packet on specific offset (driver's specific. for most of
them it is equal to 256 bytes) and this helper allows manipulating pointer to the beginning of packet's data and
therefore create a headroom for encapsulation (Picture 3). example of the usage could be found in Codeblock 1.

Picture 3: XDP packet layout/allocation after bpf_xdp_adjust_head was introduced

 // ip(6)ip6 encap. move xdp->data to allow additional ipv6 header.

 if (bpf_xdp_adjust_head(xdp, 0 - (int)sizeof(struct ipv6hdr))) {

 return false;

 }

 data = (void *)(long)xdp->data;

 data_end = (void *)(long)xdp->data_end;

Codeblock 1: example of bpf_xdp_adjust_head usage

To store states of connections new BPF's map type was introduced: LRU[9]. It allowed to replace stale entries (old/dead
connections) in a map w/ a new ones w/o any separate logic (such as timer + callback used, for example, for the same
purpose in IPVS). Together with a new map's type special flag was introduced - BPF_F_NO_COMMON_LRU. It allows
for contention free updates (each CPU do inserts/ LRU housekeeping only in dedicated zone of the map) w/ “single key
- single value” model (compare to per-cpu maps, where each cpu could have dedicated value (and hence it's is lock free
for value updates as well), but still share the same key). Schematic example of how BPF_F_NO_COMMON_LRU works
could be seen on Picture 4. Each CPU updates (write) only dedicated area (color coded) but can do lookup (read)
across whole map.

Picture 4: example of LRU map w/ BPF_F_NO_COMMON_LRU flag specified

OPERATIONAL EXPERIENCE AND LESSONS LEARNED

 A big benefit for us was that when we were writing our XDP application we were aware of environment where it is
going to be used. For example there was no BPF helper for routing lookups[10], so instead, as in our environment
servers are connected with a single interface to the L3 capable top of the rack switch, while sending packet from the
load balancer, instead of doing full route lookup on a server side, we were rewriting destination mac to be a mac
address of the L3 switch. That allowed us to do “offloading” of route lookups to the switch. For intrarack traffic this
model would work as fast as L2 switching, because most of the modern L3 switches has the same speed of L2/L3
lookups.

Also we would recommend to do proper performance testing of XDP software in your setup. XDP can bring a huge
improvements for packet processing, but software/CPU is not always a bottleneck. Unfortunately network interface
cards still acts as black boxes (hardware/firmware part of it) even in Linux. Some example which we have found during
our tests, where bottlenecks in NIC were way before software/CPU limits of the host:

1.

2.

3.

Vendor/model of the NIC dictates packet processing rate (e.g. small packet vs large packet). Unfortunately there is
serious lack of counters, reported by NIC itself. e.g. if NIC is bottlenecked by doing packet parsing for RSS - there
is no counter which would show you that

speaking of RSS - noticeable differences in RSS performance were observed between TCP and UDP traffic

IPv6 packet processing (most likely RSS) is usually around 10-20% slower.

While deploying XDP you also need to think about how you are going to monitor network usage of the host. As XDP
acts before the kernel, if packet was dropped (XDP_DROP) or transmitted (XDP_TX), kernel counters wont reflect this.
This could lead to situation when host, doing millions of packets per seconds, tens of gigabits of traffic, would report
almost 0 usage to the monitoring system, just because all monitoring gear was relaying on the counters, provided by

kernel. Solution here could be either implement counters in XDP program itself and expose them to the monitoring, or
starting to use counters, reported by hardware (e.g. from ethtool output)

Requirements of multiple XDP programs and lack of native support for it (on a single interface), was a big concern as
well: for example we need to run tool for network debugging, firewall and load balancer on a same host at the same
time in XDP context. Fortunately this limitation could be overcome with a use of combination of BPF's program's array
and bpf_tail_call. Idea is pretty simple: instead of attaching full-fledged BPF program to the interface directly, we are
attaching simple BPF program (we started to call it a “root” BPF/XDP program), the only purpose of which is to try to
call other BPF's programs from BPF's program array (see Codeblock 2 for the example). Idea is to share this program's
array across multiple BPF programs (e.g. through pinning). Under normal circumstances, a bpf_tail_call control flow
does not go back to calling program (compare to the regular function call), so this limitations needs to be addresses in
chained BPF program by:

1.

2.

each BPF program need to know on which position it's attached (so there wont be any recursion in bpf_tail_calls)

it needs to implement same logic for bpf_tail_call in the end of it's run (see Codeblock 3 for the example)

#include <uapi/linux/bpf.h>

#include "bpf_helpers.h"

#define ROOT_ARRAY_SIZE 3

struct bpf_map_def SEC("maps") root_array = {

 .type = BPF_MAP_TYPE_PROG_ARRAY,

 .key_size = sizeof(__u32),

 .value_size = sizeof(__u32),

 .max_entries = ROOT_ARRAY_SIZE,

};

SEC("xdp-root")

int xdp_root(struct xdp_md *ctx) {

 __u32 *fd;

 #pragma clang loop unroll(full)

 for (__u32 i = 0; i < ROOT_ARRAY_SIZE; i++) {

 bpf_tail_call(ctx, &root_array, i);

 }

 return XDP_PASS;

}

char _license[] SEC("license") = "GPL";

Codeblock 2: example of “root” BPF program.

 #pragma clang loop unroll(full)

 for (int i = 1; i < 16; i++) {

 jmp.call((void *)ctx, i);

 }

 return XDP_PASS;

Codeblock 3: example of how chained BPF program should behave on exit. in this example BPF program was registered on
position 0 in prog array and thats why it starts to scan it from position 1 (everything behind itself)

Speaking of debugging: the biggest operation pain point while we have started to deploy XDP was that
debug/troubleshooting tools stop to work. Namely tcpdump, because it operates within kernel's TCP/IP stack and XDP
runs before it. To be able to do proper debugging and with a help of XDP chaining xdpdump [10] tool was introduced.
It did allow us to capture packets before any other XDP/BPF program would run and gave us an ability to save this
output in pcap format for further offline processing.

Overall from operational point of view XDP was pretty stable and there wasn't any major outage because of this or
errors, which wasn't been found in our testing environment.

TESTING

Initially testing of a new code were require full topology to be set up in controlled/lab environment. Every test run was
consuming a lot of time and it was hard to automate this process. So BPF_PROG_TEST_RUN[11] feature was
introduced. Idea was that you can load your BPF program, specify what to use as an input (pointer of the memory
location with input packet), and where the result of the run should be written (pointer to where modified packet is
going to be written). Also BPF_PROG_TEST_RUN would inform caller of XDP's exit code (for example XDP_TX, XDP_PASS
etc). In our test case we were comparing resulting packet with expected one and if there was a match, test was
considered as successful.
Picture 5 shows example of how input and output data for tests could looks like. e.g. we are using base64 encoded
packet as an input and output.

Picture 5: example of input and output data for BPF_PROG_TEST_RUN

As a result we have built a collection of unittests for every codepath in our load balancer's code and it became really
easy to test any new feature, to make sure that nothing is broken and to do it in automatic way. Picture 6 shows an
example of how output of unittests could looks like.

Picture 6: example of output of unittesting framework, based on BPF_PROG_TEST_RUN.

EVOLUTION

After initial version of XDP load balancer was introduced, few major performance related changes and additional
features were introduced.

LRU map with BPF_F_NO_COMMON_LRU flag works good in scenario when there could be multiple writers, but it could
be significantly inefficient in terms of memory consumption in environment when only subset of CPUs are responsible
for IRQ handling (e.g. number of RX queues in a NIC is less then number of CPUs on the host). This is because LRU
w/ BPF_F_NO_COMMON_LRU flag is divided by multiple zones, and each CPU updates only one zone, however
because only subset of CPU are doing IRQ handling, most of the map's zones are not used at all. See Picture 7. for
visual representation of the issue. In our environment we have seen up to 70% of allocated memory was unused
because of this.

Picture 7: LRU's working are vs total allocated

To fight this inefficiency BPF's “map-in-map” was introduced[12]. Map in map is a special BPF's map (either “hash of
maps” or “array of maps”) where value is a descriptor of another BPF's map. In our environment we are using one to
one mapping between NIC's IRQ and CPU, so we know in advance, before starting BPF's program, which CPUs are

going to be responsible for traffic handling. This knowledge allow us to create “map-in-map” where key is a CPU id and
value is a descriptor of LRU map for this CPU. see Codeblock 4: for the usage example.

 __u32 cpu_num = bpf_get_smp_processor_id();

 void *lru_map = bpf_map_lookup_elem(&lru_maps_mapping, &cpu_num);

Codeblock 4: example of “map in map” usage.

With this approach we stopped to waste memory and as a side effect this also increased performance of our load
balancer, as for the lookups the size of the memory became smaller (CPU started to do lookups only in dedicated map,
which is smaller compare to what we have used before) and more cache friendly.

BPF's map allocation had a specific limitation, that on the host with multiple CPUs/multiple NUMA domains, it would
allocate maps on the same NUMA node as userspace program, which is creating them, is running. In our environment
we have hosts with CPUs and IRQ affinity configured in a way, that each CPU has same amount of IRQs mapped to it.
That lead to situation where CPUs, which are “remote” (from NUMA point of view) are seeing more stall cycles, when
trying to access BPF's maps (because to access em, they need to cross QPI[13] link). To fight this, special NUMA hint was
introduced during BPF's map creating [14]. This allow to specify on which NUMA domain specific map should be
allocated, and did allow us to allocate LRUs (most frequently updated type of maps in our L4 load balancer) on the
local NUMA node. We have saw huge performance boost (tens of percents) on CPUs, which were forced to do QPI
traversal before.

Another interesting problem which we were facing is that XDP lacks support for fragmentation. The problem because
of this limitation is that after adding additional header resulting packet could be bigger than interface MTU. One
solution could be to increase MTU on every server to the value, bigger than default MTU size of the internet (1500
bytes), to make sure that we have additional head room for encapsulation even after we have received packet of
maximum size, supported by the internet. Changing MTU could be feasible on our edge network (small clusters which
are located all over the world. where the size of the cluster is multiple racks). However it would be much harder/takes
more time in our datacenters, with millions of servers, where we do run our load balancer as well. To be able to deploy
XDP there, we have introduced additional helper - bpf_xdp_adjust_tail [15]. This helper allows to “shrink” the packet
and is used to generate ICMP “packet too big, fragmentation needed”. This ICMP message would contain, as a payload,
first N bytes of the packet, which triggered generation of it. To be able to do it from XDP context, you would need:

1.

2.

shrink the packet to the “first N bytes” by using bpf_xdp_adjust_tail

add enough headroom for ICMP + additional IP headers

Example of the usage of this helper could be found in Codeblock 5.

static inline int send_icmp_too_big(struct xdp_md *xdp,

 bool is_ipv6, int pckt_size) {

 int offset = pckt_size;

 if (is_ipv6) {

 offset -= ICMP6_TOOBIG_SIZE;

 } else {

 offset -= ICMP_TOOBIG_SIZE;

 }

 if(bpf_xdp_adjust_tail(xdp, 0 - offset)) {

 return XDP_DROP;

 }

 if (is_ipv6) {

 return send_icmp6_too_big(xdp);

 } else {

 return send_icmp4_too_big(xdp);

 }

}

Codeblock 5: example of usage bpf_xdp_adjust_tail helper. packet is shrinked to ICMP(6)_TOOBIG_SIZE bytes

NEXT STEPS

Today we have good amount of helpers and features in XDP layer or BPF in general, however lots of things are still
missing. To name the few, it would be nice to have and API between XDP and NIC to allow checksum offloading. Today
it's close to impossible to do any encapsulation with XDP which requires full packet checksumming (e.g. VXLAN or
GUE). Other missing feature is to have a crypto helper, which would allow to run encryption/decryption routines, as
today lots of new protocols built with privacy in mind, and for network middle box became crucial to be able to
decrypt some small partition of packet for further processing or routing (e.g. QUIC's connection-id field could be
encrypted in near future). The last but not least is to be able to do bounded loops inside BPF program. The need for
them arise from the need to parse TLV based protocols, where offsets are not well defined (e.g. TCP options)

REFERENCES

[1] - DPDK: https://www.dpdk.org/
[2] - netmap: http://info.iet.unipi.it/~luigi/netmap/
[3] - Open Source Days 2017 XDP
presentation: https://people.netfilter.org/hawk/presentations/OpenSourceDays2017/XDP_DDoS_protecting_osd2017.
pdf
[4] - “XDP in practice: integrating XDP in our DDoS mitigation pipeline” by
Cloudflare: https://netdevconf.org/2.1/session.html?bertin
[5] - “Layer 4 Load Balancing at Facebook”: https://atscaleconference.com/videos/networking-scale-2018-layer-4-load-
balancing-at-facebook/
[6] - Katran: https://github.com/facebookincubator/katran
[7] - L3 DSR w/ IP Tunneling: http://www.linuxvirtualserver.org/VS-IPTunneling.html
[8] - bpf_xdp_adjust_head patch series: https://patchwork.ozlabs.org/patch/702198/
[9] - bpf LRU map support patch series: https://lwn.net/Articles/706318/
[10] - xdpdump: https://github.com/facebookincubator/katran/tree/master/tools/xdpdump
[11] - BPF_PROG_TEST_RUN patch series: https://patchwork.ozlabs.org/patch/745468/
[12] - BPF map-in-map support patch series: https://lwn.net/Articles/718182/
[13] - QPI: https://en.wikipedia.org/wiki/Intel_QuickPath_Interconnect
[14] - NUMA hints support during BPF maps creation: https://patchwork.ozlabs.org/patch/803369/
[15] - bpf_xdp_adjust_tail patch series: https://patchwork.ozlabs.org/cover/900109/

https://www.dpdk.org/
http://info.iet.unipi.it/~luigi/netmap/
https://people.netfilter.org/hawk/presentations/OpenSourceDays2017/XDP_DDoS_protecting_osd2017.pdf
https://netdevconf.org/2.1/session.html?bertin
https://atscaleconference.com/videos/networking-scale-2018-layer-4-load-balancing-at-facebook/
https://github.com/facebookincubator/katran
http://www.linuxvirtualserver.org/VS-IPTunneling.html
https://patchwork.ozlabs.org/patch/702198/
https://lwn.net/Articles/706318/
https://github.com/facebookincubator/katran/tree/master/tools/xdpdump
https://patchwork.ozlabs.org/patch/745468/
https://lwn.net/Articles/718182/
https://en.wikipedia.org/wiki/Intel_QuickPath_Interconnect
https://patchwork.ozlabs.org/patch/803369/
https://patchwork.ozlabs.org/cover/900109/

