
What’s Happened to the World of Networking Hardware Offloads?

Jesse Brandeburg, Anjali Singhai Jain

Intel Corporation

Hillsboro, Oregon, USA

jesse.brandeburg@intel.com

anjali.singhai@intel.com

Abstract

Over the last 10 years the world has seen NICs go from

single port, single netdev devices, to multi-port, hardware

switching, CPU/NFP having, FPGA carrying, hundreds of

attached netdevs providing, behemoths. This presentation

will begin with an overview of the current state of filtering

and scheduling, and the evolution of the kernel and

networking hardware interfaces. (HINT: it’s a bit of a

jungle we’ve helped grow!) We’ll summarize the different

kinds of networking products available from different

vendors, and show the workflows of how a user can use the

network hardware offloads/accelerations available and

where there are still gaps. Of particular interest to us is how

to have a useful, generic hardware offload supporting

infrastructure (with seamless software fallback!) within the

kernel, and we’ll explain the differences between

deploying an eBPF program that can run in software, and

one that can be offloaded by a programmable ASIC based

NIC. We will discuss our analysis of the cost of an offload,

and when it may not be a great idea to do so, as hardware

offload is most useful when it achieves the desired speed

and requires no special software (kernel changes.) Some

other topics we will touch on: the programmability exposed

by smart NICs is more than that of a data plane packet

processing engine and hence any packet processing

programming language such as eBPF or P4 will require

certain extensions to take advantage of the device

capabilities in a holistic way. We’ll provide a look into the

future and how we think our customers will use the

interfaces we want to provide both from our hardware, and

from the kernel. We will also go over the matrix of most

important parameters that are shaping our hardware

designs and why.

Introduction

The networking stack’s support of hardware offloads has

been built over time with each feature generally serving the

needs of the moment, now we have several interfaces and

multiple different hardware models, sometimes for the

same feature. The feature space of offloads is only going to

grow, and we (as a community) need to plan ahead and

anticipate the growth to provide some structure and

direction.

Evolution

How we got here

Back when networking was young, devices used to be one

netdev, one external port. Things were easier and features

of drivers included; one skb equals one packet on the wire.

Since then, networking has evolved and the stack with it,

usually one feature at a time. Development originally

started with enabling hardware offload of some features of

the stack, but often those features were fairly simple and

stateless, particularly checksum offload of both transmit

and receive, helped alleviate the CPU from having to burn

cycles on every packet. Those features were generally

expressed with a single offload flag programmed into the

netdev->features (see Documentation/networking/netdev-

features.txt.) After that we started moving on to more

complicated offloads like Transmit Segmentation Offload

(TSO.) The TSO feature was first committed back in linux-

mailto:jesse.brandeburg@intel.com
mailto:anjali.singhai@intel.com

2.5.331. The TSO feature itself has been rewritten several

times, yielding what we have today, but the segmentation

offload has become more complicated as more features get

added to the stack, including tunnel offloads as well as

more protocols. These changes yield an ever more

complicated Network Controller, more complicated

validation plans, and lots more room for bugs.

Network Interface Controllers have continued the

technology march, moving more complexity into the NIC,

including offload of protocol stacks (like RDMA over

Ethernet,) and offloading eBPF programs, which has led

some vendors to provide fully flexible “Smart NICs”.

Over time as the development has continued, each vendor

adds a feature (small or large) to the kernel as hardware

becomes available that can support it. That said, a lot of

configurability and options for the user are often left un-

implemented or implemented out-of-tree due to needing to

provide a cross vendor generic implementation when the

feature is upstreamed.

Once the pattern was established with each new feature

being added a little bit at a time, it seems to the authors that

we are just continuing along a path of “a little bit here, a

little bit there” and we are not looking at the big picture or

even just stating where we want to be in a few years.

The Benevolent Corporation?

For years, and pretty much still to this day, Microsoft

specified everything having to do with hardware offload

and then supported it in the OS interfaces. It could be

argued that the only reason we have consistent stateless

hardware offloads is because some entity, in this case

Microsoft, was defining for networking vendors how

everything should work, letting the vendor implement, and

providing a check (certification) to make sure that the

expectations documented in the specification were met.

Microsoft did this for their own best interest, but the end

result was a consistent hardware ecosystem that the Linux

community (and others) benefitted from.

Current hardware

Basic network interface controllers (NICs)

A NIC that optionally provides basic stateless offloads and

doesn’t support SR-IOV. Generally, this kind of NIC only

supports one or slower speeds. Definitely commodity, but

the features from the Advanced NICs category below are

1 commit 9d9cfb15585, Alexey Kuznetsov
<kuznet@ms2.inr.ac.ru>, Date: Wed Aug 28 11:57:33

always becoming “normal” and displacing NICs in this

category.

Advanced NICs

This NIC definitely provides stateless offloads, possibly

has support for multiple speeds and / or PHYs (physical

layer,) has internal resources to support high speed

networking; including larger FIFOs, stateless offloads, and

interrupt moderation. Supports multiple queues for multi-

core load balancing, yielding a big step forward in terms of

scalability at higher speeds.

Switch capable NICs and drivers

This category builds on the above, but these have a switch

in them, mostly to enable SR-IOV, but the usage cases for

the switch continue to grow in this space.

Switching chips

These chips provide many ports of network connectivity

with hardware connectivity between ports such that the

data plane can be almost completely autonomous once set

up. These are the kind of chips that are typically in a home

router, or larger versions of them in chassis or Top-of-rack

switches. They usually run an embedded OS. Today these

are also sometimes run by switchdev drivers.

System on a chip (SoC / SmartNIC)

These NICs likely have CPU cores, local RAM (sometimes

Gigabytes,) and sometimes full switch chips. These SoC

ideas are not new, but they are somewhat new to the NIC

world in the last couple years.

System on a chip with FPGA (SmartNIC + FPGA)

In addition to all the previously mentioned features, these

NICs can have fully programmable FPGAs, giving the user

lots of capability, but can take a lot of work to deploy, and

is not typically useful to a single instance deployment.

Offloads and Workflows

How different are the same offloads from one vendor

to another?

Every feature and offload that a NIC device supports can

be tweaked with many configuration parameters. Not every

vendor supports every possible customization when they

support a given offload. There is nothing that binds them to

provide all the knobs and there is no way for Linux as an

operating system to impose a bare minimum or check the

minimum.

2002 -0700, [NET]: Add segmentation offload support
to TCP.

mailto:kuznet@ms2.inr.ac.ru

In the following, we will summarize a few of the key

features, and how every vendor can differ in their

implementation.

Receive Side Scaling (RSS)

RSS is a mechanism to spread traffic to multiple receive

queues using a hash over certain packet header fields. RSS

can support the following configurations in the hardware

depending on the NIC’s capability:

• Number of RX queues that RSS can direct traffic

towards

• The algorithm used for hashing

• The key used for the hash

• Number of hash buckets used (indirection table

size)

• What packet header fields to hash together in

order to get enough entropy

• Packet types that can be hashed

• Assigning queues to hash buckets

• RSS for pass-through VFs and their

configurability

Depending on the NIC vendor, not all of the above is

configurable from software and in some cases even if the

hardware allows configurability, the software may not (or

maybe cannot) expose all of it to the user, sometimes

leading to very different results in terms of how much load

balancing across queues is achieved for different types of

traffic.

Large Receive Offload (LRO,) hardware GRO

Sometimes hardware LRO is known as Receive Side

Coalescing aka RSC. LRO is a mechanism to coalesce, in

hardware, several received packets from a flow (TCP/IP or

UDP flow identified by a flow rule match) and then

indicate that “super packet” to the software stack above the

driver. The software stack can use less CPU cycles overall

due to processing fewer packets. Configuration of LRO is

done using the following configuration options (once again

depending on NIC’s capability):

• Size of largest coalesce

• Number of flows that can be coalesced in parallel

• Flow types that can be coalesced: TCP/IPV4,

TCP/IPv6, UDP/IPv4, UDP/IPv6, etc.

• Mechanism to enable/disable LRO per Queue

• Mechanism to enable/disable LRO per flow

• LRO for pass-through VFs and their

configurability

Vendors can differ in this space by modifying the above

parameters, no one has the same default, and there is no

larger specification in Linux saying how things should

work.

Transmit Segmentation Offload (TSO aka LSO)

This is the reverse of LRO, but for transmit. Instead of the

software breaking a packet (see Generic Segment Offload

- GSO) into MTU sized segments, and sending each packet

separately (header and data in one skb) to the driver to send

it on the wire, hardware can do this segmentation with help

from software. When implemented in a generic fashion in

the hardware, TSO can be used to accomplish TCP

segmentation offload and UDP segmentation offload for

tunneled and non-tunneled packets. Depending on the

NIC’s implementation it may or may not support the

following configurations for a segmentation offload:

• IPv6 options or a plethora of them

• TCP vs UDP segmentation offload

• Tunneled vs Non-tunneled packet segmentation

offload, particularly if the outer headers need L4

checksum calculation in the hardware (Geneve

and VxLAN)

• Parallel support for TSO Contexts (across the PF

or chip)

• Ability to enable/disable TSO per queue

• Maximum size of a single descriptor

• Maximum number of descriptors

• Maximum bytes in a single offload

It should be noted that the Linux kernel networking stack

has an API for drivers to ‘opt-out’ of offloading a particular

packet, using the .ndo_features_check netdev op. This

works ok, but is a relatively high-overhead thing to do for

each and every packet, especially because there is no

memory in the stack of the previous path for a packet that

hit the exception for some reason.

Receive Checksum Offload

Receive checksum offload usually consists of hardware

recognizing a packet that it should compute a checksum on,

and indicating that checksum or the status of the checksum

calculation (pass/fail) in the receive metadata for the

packet. There is a lot of variability between vendors with

respect to receive checksum offload. A device can either

provide a checksum pass/fail for L3/L4 checksums

(CHECKSUM_UNNECCESARY) or provide a raw

checksum over the entire packet

(CHECKSUM_COMPLETE) and then let the stack

validate the packet checksum. Differences in support by

vendor:

• Checksum validate vs deliver raw checksum

• Checksum for tunneled vs non-tunneled packets

• In case of pEdit offloads with tc, ability to fix the

checksum of delivered packets

Transmit Checksum Offload

Transmit checksum offload usually consists of computing

and inserting a protocol specific checksum at a particular

offset within a packet. Hardware generally knows how to

compute checksums only for a certain set of protocols, and

likely will not know how or where to insert a checksum for

every possible kind of packet that the stack might support

(new protocols can be added too!)

Some of the flags exist in the kernel today for device

drivers to communicate the limits of the hardware with

respect to these offloads. The bad news is that even for a

simple feature such as transmit checksum offload, the

following is output from ethtool -k, demonstrating the

complexity of expression for even this simple feature:

• tx-checksumming: on

• tx-checksum-ipv4: on

• tx-checksum-ip-generic: off [fixed]

• tx-checksum-ipv6: on

• tx-checksum-fcoe-crc: off [fixed]

• tx-checksum-sctp: on

Even in the case of transmit checksum offloads, drivers

cannot easily specify all the existing offload capability of

even this interface. The default ethtool interface doesn’t

cleanly express checksum offload support for tunneled

protocols, like FOU2, Geneve, VxLAN, STT3, etc.

Flow Classification (aRFS, Flow director, ntuple rules)

There are many different ways that a NIC vendor can

support flow classification offload, some are to achieve

locality of where the packets get delivered to where the

application is running for better performance for example:

aRFS - Adaptive Receive Flow Steering

Adaptive receive flow steering is a feature to allow the

kernel to direct packets to a particular receive queue using

hardware steering. The kernel uses the ntuple interface (see

below) to program rules, noticing when the application’s

socket reads miss the receiving CPU, and programming

new rules for each flow. Once again there is no clarity on

how many flows can be steered this way by the NIC, the

programming is best effort and the usage experience can

2 "Foo over UDP [LWN.net]." 1 Oct. 2014,

https://lwn.net/Articles/614348/. Accessed 4 Nov. 2018.

vary quite drastically between vendors and even between

hardware from the same vendor.

Ntuple - the rule programming interface used by

ethtool

Ntuple rules from ethtool provides an interface that could

potentially match on any field for a given flow type, and

the matching fields could differ in terms of mask etc.,

without priority specified. The NIC vendors may

implement this using CAMs or TCAMs, resulting in

limitations of how flexible the match can be for a flow type.

This interface to ethtool has gone through several

iterations, giving users quite a bit of confusion about how

they should use it. Gaps here include the inability to query

how many rules can be programmed, and what kind of rules

will work (users just have to try some to see if they will

work.) One (admittedly unhappy) example for the Intel

NICs is that ixgbe and i40e drivers have different

programming interfaces (support different kind of

matches) when using the ethtool interface because the

underlying hardware is significantly different.

tc-u32 - match a 4-byte field anywhere in the packet

and do an action, and others...

While several types of hardware support offloading u32

rules, there is a whole lot of software configurability in u32

including multiple tables, hash tables, and chained matches

which are likely not fully implemented by anyone’s

hardware. What the user ends up with in this case is a

vendor defined, extremely limited hardware offload

implementation that might work, but only if you format and

limit your rules for u32 to a very specific set. When the

hardware offload is unavailable, a rule can be

processed/executed by the software stack. Each vendor

ends up implementing an “individual vendor” set of

offloads, and may say that they support u32, but you can

only find out if a particular rule would be offloaded by

actually trying to program it on a NIC, or by reading and

understanding a lot of driver code.

tc-flower - match a complicated flow specification, src-

ip, dst-ip, protocol, src-port, dst-port, and do an action

on the match

From the man page for tc-flower: The flower filter matches

flows to the set of keys specified and assigns an arbitrarily

chosen class ID to packets belonging to them. Additionally

(or alternatively) an action from the generic action

framework may be called. This interface is a vast

3 "What is GENEVE? - Red Hat." 22 Jun. 2017,

https://www.redhat.com/en/blog/what-geneve. Accessed 4

Nov. 2018.

https://lwn.net/Articles/614348/
https://www.redhat.com/en/blog/what-geneve

improvement from what we had before, but even simple

things like querying a piece of hardware to figure out what

kind of tc-flower filters can be offloaded is not possible.

The user is left either attempting to read driver code, or

pouring over vendor provided manuals to find out if what

they want to do can be offloaded. We’ve also ended up with

workarounds like skip_hw and skip_sw directives in the

interface to try to address these problems, which are a good

idea, but are not automatic, obvious or programmatically

discoverable.

Can users express a rule set for tc-flower (using skip_sw,

which forces hardware offload of a rule,) pick those rules

up from one NIC, and try to apply that same rule set to

another NIC?

vSwitch Offload

vSwitch offload is advertised by many vendors, but there

is no defined way to express what this means to the kernel,

nor are there tools to describe and configure things that

hardware can offload. vSwitch offload could mean a simple

L2 offload, or could mean supporting overlay networks that

get terminated in the hardware. vSwitch offload could

mean there are meters and policers applied in hardware, per

virtual port. It could mean flow tracking and flow eviction

done by hardware. vSwitch offload could also mean a

complete pass through using SR-IOV or just an assist in

terms of Encap/Decap.

The point is a vendor can say they support vSwitch offload

and no one really knows what it means.

Tunnel Offloads

Tunnel offloads are a particularly thorny area of

implementation in the Linux kernel. There are several good

summaries4 of the problems in this space, but the takeaway

is that examining capabilities and configuring the offloads

around tunnel offloads is complex, ill defined, and

implemented differently in every piece of hardware.

eBPF In Hardware vs Software

The extended Berkeley Packet Filter provides a nice Linux

kernel and user space interface to filter packets and apply

simple filtering programs to them, as well as take an action

based on that program. Some companies have shown that

offloading eBPF programs in hardware is possible, but it

takes a very specialized NIC with some very hefty

4 "OVN – Geneve vs VXLAN, Does it Matter? | Russell

Bryant." 30 May. 2017,

https://blog.russellbryant.net/2017/05/30/ovn-geneve-vs-

vxlan-does-it-matter/. Accessed 4 Nov. 2018.

hardware behind it to be able to keep up with any decent

rate of incoming packets (millions or more packets per

second.) In the case of Intel hardware, the eBPF programs

have a tendency to be hard for us to offload directly

because we can’t separate out from an eBPF program what

is offloadable by our hardware, and what actions

can/should be taken by our hardware. Also, see the

paper/presentation from Linux Plumbers Networking

Track 2018 from Waskiewicz, et al. on eBPF metadata.

Cost of an Offload

Many times, hardware vendors like Intel are forced to make

business decisions (go / no-go) around perceived use and

value of a feature vs the hardware cost to produce. Often

an offload can be extremely expensive to implement in

hardware. A good example of this is hardware based LRO.

In order to implement this in hardware, the NIC must be

able to track flows, track state, note ACK/FIN events, have

reasonable timeouts for unclosed flows, have a large

amount of resources dedicated to each flow (likely 16-64

bytes of hardware memory,), not add unnecessary latency,

and not least of all, have no bugs in parsing or handling

packets that require a spin of the silicon. Without some

caution, offloads can also cause ossification if we as

developers and a community are not constantly looking out

for problems created by offloading workloads.

Massive Programmability of Smart NICs

With the advent of data-center based computing, many

companies are buying large amounts of server machines,

installing high speed networking and managing the entirety

of their network under one schema. In this case the extra

control and flexibility being offered by a SmartNIC5

becomes desirable. These offloads and functionality are

very useful to a consumer with resources to develop

configurations for them, but the authors wonder what will

happen when the data center configuration is not one size

fits all (vendors.)

A Look to the Future

What’s coming? It’s here already. System on a Chip (SoC)

implementations of network cards with CPUs, FPGAs,

firmware, local storage and memory, and even internal

OSes. Customers want a networking object installed in the

5 "Azure Accelerated Networking: SmartNICs in the Public

... - Microsoft." https://www.microsoft.com/en-

us/research/uploads/prod/2018/03/Azure_SmartNIC_NSD

I_2018.pdf. Accessed 4 Nov. 2018.

https://blog.russellbryant.net/2017/05/30/ovn-geneve-vs-vxlan-does-it-matter/
https://blog.russellbryant.net/2017/05/30/ovn-geneve-vs-vxlan-does-it-matter/
https://www.microsoft.com/en-us/research/uploads/prod/2018/03/Azure_SmartNIC_NSDI_2018.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2018/03/Azure_SmartNIC_NSDI_2018.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2018/03/Azure_SmartNIC_NSDI_2018.pdf

server that can allow renting the whole server’s CPU and

system resources, but still maintain some control of that

machine’s network from outside. We need a way to express

this device’s capabilities and control it.

The market has fragmented a bit, customers want three

things from NICs with offloads, and they are somewhat

orthogonal.

• A speeds and feeds (high speed with many ports)

ASIC, but still want offloads and maybe even SR-

IOV/Scalable-IOV.

• A full Switch on a NIC, with flow rules, visibility

into switch config, port representors, etc.,

basically a NIC with switchdev enabled to

represent all the virtual ports hosted by the

hardware.

• A full SoC / computer running on my NIC, maybe

even with data-plane independence, maybe

including port to port forwarding and on-board

flow management, via a control plane running

locally to the NIC or coordinating with an external

orchestrator.

Proposals

How do we get to a generic way to express offload

capabilities? How can a user find and/or make a program

to use them? We recommend defining and developing a

common offload infrastructure, which would include a

user-space library for programs to attach to and query, as

well as the kernel implementation of the common pieces

among vendors. Each implementation could be slightly

different, but the method of defining each feature and what

it does would be generic.

An interface much like the devlink dpipe6 interface is

possible, we envision something like this for hardware

offloads is required. As it turns out, since this paper was

proposed, devlink gained some useful code in this space,

the ‘devlink dev param’ option. This is a possible way

forward that needs investigation and we are curious if the

community will support a lot more use of this option, but it

does seem limited since devlink is aimed at configuring

chip-wide options (its current granularity is associated with

6 "dpipe - NetDev conference."

https://www.netdevconf.org/2.1/session.html?sharshevsky

. Accessed 4 Nov. 2018.

a PCIe device/function) and is possibly missing some

functionality.

We also believe that the kernel can benefit from adding

support for and separating configuration of the parsing

pipeline (the kind of packets that can be filtered on) in the

hardware from the actual filtering rules and actions. It

should be noted that the P4 language7 has the ability to both

express the pipeline and programs that use that pipeline.

We aren’t encouraging the kernel to adopt P4, but it is

worthwhile to know what other elements in the ecosystem

are using so we can work on kernel compatible solutions.

Currently if you use P4 to generate eBPF programs, it’s not

clear how the pipeline can be configured.

Conclusion

Every vendor is implementing more offloads and features

to try to differentiate, and during the implementation of

each feature and the associated software support, each

vendor causes more fragmentation of the user interfaces as

well as the user experience.

Sometimes today, you can even find a driver that says it

supports feature X, but it’s implementation of that feature

could be limited or even completely different to the point

that it doesn’t work the same or even use the existing

interfaces the same way as other vendor’s drivers. We see

this today when each vendor is having to create unique (to

that vendor) documentation for how to use supposedly

“common” interfaces. This causes a less than optimal user

experience, we think we (as the community) can do better.

We believe our correct way forward is to figure out a

generic way to advertise and show the current pipeline of a

device, similar to devlink dpipe, and add more offload

configuration in a very similar way to devlink dev param,

but possibly with a better granularity of device

specification, and with a more concrete plan for how the

infrastructure and code should be developed going

forward.

As a general method going forward, the authors also

believe the community and kernel can benefit from asking

for specifications / expectations of an interface to be

written down and stored in the kernel as documentation,

not just as code. If we as a community of reviews and

7 "P4 Language Specification - P4.org." https://p4.org/p4-

spec/. Accessed 4 Nov. 2018.

https://www.netdevconf.org/2.1/session.html?sharshevsky
https://www.netdevconf.org/2.1/session.html?sharshevsky
https://p4.org/p4-spec/
https://p4.org/p4-spec/

maintainers ask for designs that not only include an initial

implementation, but as well include some thinking in the

relevant space about where the design can go in the future,

it will clearly benefit all of us. As well, we believe there is

benefit to implementing some sort of check (in zero-day

tests or somewhere else like LTP) to make sure

specifications are being met, and offloads are working as

intended.

Acknowledgements

© 2018 Intel Corporation

Intel, the Intel logo, are trademarks of Intel Corporation in

the U.S. and/or other countries.
Other names and brands may be claimed as the property of

others.

