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Abstract

eBPF is an emerging technology in Linux kernel with the
goal of making Linux kernel extensible by providing an
eBPF virtual machine with safety guarantee. Open vSwitch
(OVS), is a software switch running majorly in Linux op-
erating systems, its fast path packet process is implemented
in Linux kernel module, openvswitch.ko. To provide greater
flexibility and extensibility to OVS datapath, in this work,
we present our design on making use of eBPF technology
in OVS datapath development with two projects: the OVS-
eBPF project and the OVS-AFXDP project. The goal of
OVS-eBPF project is to re-write existing flow processing
features in openvswitch kernel datapath into eBPF program,
and attaching it to Linux TC. On the other hand, the OVS-
AFXDP project aims to by-pass the kernel using an AF_XDP
socket and moves most of the flow processing features into
userspace. We demonstrate the feasibility of implementing
OVS datapath with the aforementioned technologies and
present the performance numbers in this paper.

1. Introduction

eBPF, extended Berkeley Packet Filter, enables userspace
applications to customize and extend the Linux kernel’s
functionality. It provides flexible platform abstractions for
network functions, and is being ported to a variety of plat-
forms. In the Linux kernel, users can attach eBPF programs
to TC and XDP hook points as shown in Fig 1. Based on
this design, we explore the possibilities of utilizing eBPF
to implement OVS datapath in threefold: 1) in-kernel flow
processing by attaching eBPF programs to TC, 2) offloading
a subset of flow processing to XDP (eXpress Data Path),
and 3) moving the flow processing to userspace by using
AF_XDP.

Firstly, in OVS-eBPF project [21], we attach flow pro-
cessing eBPF programs to TC. We start with the most ag-
gressive goal that we plan to re-implement the entire features
of OVS kernel datapath under net/openvswitch/* into eBPF
code. We work around a couple of eBPF limitations, for ex-
ample, the lack of TLV (Type-Length-Value) support leads
us to redefine a binary kernel-user API using a fixed-length
array; without a dedicated way to execute a packet, we create
a dedicated device that attached a eBPF program to handle
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Figure 1: eBPF program hook points in the Linux kernel.

packet execute logic for userspace to kernel packet trans-
mission. Currently, OVS-eBPF can satisfy most of the basic
features for flow processing and tunneling protocol support,
and we are investigating more complicated features such as
connection tracking, NAT, (de)fragmentation, and ALG.

We can attach eBPF programs one layer below TC to
XDP (eXpress Data Path). It is a much faster layer for packet
processing, but there is almost no extra packet metadata
available, and XDP only provides limited kernel helpers.
Depending on the type of flows, OVS can offload a subset
of its flow processing to XDP. However, the fact that XDP
has fewer helper function support implies that either 1) only
very limited number of flows are eligible for offload, or 2)
more flow processing logic needed to be implemented in
native eBPF code. For example, it is more difficult for OVS
datapath to provide tunnel support in XDP, since lightweight
tunnel kernel helpers are not available.

XDP provides another way for interacting with userspace
programs, called AF_XDP. AF_XDP is a socket interface for
control plane and a shared memory API for accessing pack-
ets from userspace application. Using AF_XDP, the OVS-
AFXDP project redirects packets to userspace, and pro-
cesses the packets using OVS’s full-fledged userspace dat-
apath implementation, dpif-netdev. In this approach, OVS-
AFXDP project treats the AF_XDP as a fast packet-1/0 chan-
nel.

This paper focuses on the OVS-eBPF and OVS-AFXDP
projects. The remainder of this paper is organized as follows:
In Section 2, we first provide some background information



on eBPF, XDP, and AF_XDP. We then present the design,
implementation, and evaluation of the OVS-eBPF and OVS-
AFXDP projects in Section 3 and Section 4 respectively.
Finally, Section 5 concludes the paper and discusses the
future work.

2. Background
2.1 OVS Forwarding Model

OVS is widely used in virtualized data center environments
as a software switching layer inside various operating sys-
tems, including FreeBSD, Windows Hyper-V, Solaris and
Linux. As shown in Figure 2, the architecture of OVS con-
sists of two major components: a slow path and a fast path.
OVS begins processing packets in its datapath, the fast path,
shortly after the packet is received by the NIC in the host
OS. The OVS datapath first performs packet parsing to ex-
tract relevant protocol headers from the packet and stores it
locally in a manner that is efficient for performing lookups
(flow key), then it uses this information to look into the
match/action cache (flow table) and determines what needs
to be done for this packet. If there is no match in the flow
table, the datapath passes the packet from the kernel up to
the slow path, ovs-vswitchd, which maintains the full de-
termination of what needs to be executed to modify and for-
ward the packet correctly. This process is called packet up-
call and usually happens at the first packet of a flow seen
by the OVS datapath. If the packet matches in this flow ta-
ble, then the OVS datapath executes its corresponding ac-
tions from the flow table lookup result and updates its flow
statistics.

In this model, the ovs-vswitchd determines how the
packet should be handled, and passes the information to the
datapath inside the kernel using a Linux generic netlink in-
terface. Over the years the OVS datapath features evolved.
The initial OVS datapath used a microflow cache for its flow
table, essentially caching exact-match entries for each trans-
port layer connection’s forwarding decision. And in later
versions, two layers of caching were used: a microflow cache
and a megaflow cache, which caches forwarding decisions
for traffic aggregates beyond individual connections. In re-
cent versions of OVS, datapath implementations include fea-
tures such as connection tracking, stateful network address
translation, and support for layer 3 tunneling protocols.

2.2 eBPF Basics

Berkeley Packet Filter, BPF, is an instruction set architec-
ture proposed by Steven McCanne and Van Jacobson in
1993 [14]. BPF was designed as a generic packet filtering
solution and is widely used by every network operator today,
through the well-known tcpdump/wireshark applications. A
BPF interpreter is attached early in the packet receive call
chain, and it executes a BPF program as a list of instruc-
tions. A BPF program typically parses a packet and decides
whether to pass the packet to a userspace socket. With its
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Figure 2: The forwarding plane of OVS consists of two compo-
nents; ovs-vswitchd handles the complexity of the OpenFlow pro-
tocol, and the datapath acts as a caching layer to optimize the per-
formance. A flow missed by the match/action table in the datapath
triggers an upcall, which forwards the information to ovs-vswitchd.
ovs-vswitchd installs an appropriate flow entry into the datapath’s
match/action table.

simple architecture and early filtering decision logic, it can
execute this logic efficiently.

For the past few years, the Linux kernel community has
improved the traditional BPF (now renamed to classic BPF,
cBPF) interpreter inside the kernel with additional instruc-
tions, known as extended BPF (eBPF). eBPF was introduced
with the purpose of broadening the programmability of the
Linux kernel. Within the kernel, eBPF instructions run in a
virtual machine environment. The virtual machine provides
a few registers, stack space, program counter, and a way
to interact with the rest of the kernel through a mechanism
called helper functions. Similar to cBPF, eBPF operates in
an event-driven model on a particular hook point; each hook
point has its own execution confext and execution at the hook
point only starts when a particular type of event fires. A BPF
program is written against a specific context. For example, a
BPF program attached to a raw socket interface has a context
which includes the packet, and the program is only triggered
to run when there is an incoming packet to the raw socket.

The eBPF virtual machine provides a completely isolated
environment for its bytecode running inside; in other words,
it cannot arbitrarily call other kernel functions or access
into memory outside its own environment. To interact with
the outside world, the eBPF architecture white-lists a set of
helper functions that a BPF program can call, depending
on the context of the BPF program. For example, a BPF
program attached to raw socket in a packet context could
invoke VLAN push or pop related helper functions, while a
BPF program with a kernel tracing context could not.

To store and share state, eBPF provides a mechanism
to interact with a variety of key/value stores, called maps.
eBPF maps reside in the kernel, and can be shared and
accessed from eBPF programs and userspace applications.
eBPF programs can access maps through helper functions,
while userspace applications can access maps through BPF
system calls. There are a variety of map types for different
use cases, such as hash tables or arrays. These are created by
a userspace program and may be shared between multiple
eBPF programs running in any hook point.
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Figure 3: The workflow of TC and XDP eBPF development process
and its packet flow. The eBPF program compiled by LLVM+clang
is loaded into the kernel using iproute. The kernel runs the program
through a verification stage, and subsequently attaches the program
to the TC/XDP ingress hook point. Once successfully loaded, an
incoming packet received by XDP/TC ingress will execute the
eBPF program.

Finally, eBPF tail call [18] is a mechanism allowing one
eBPF program to trigger execution of another eBPF pro-
gram, providing users the flexibility of composing a chain
of eBPF programs with each one focusing on particular fea-
tures. Unlike a traditional function call, this tail call mech-
anism calls another program without returning back to the
caller’s program. The tail call reuses the caller’s stack frame,
which allows the eBPF implementation to minimize call
overhead and simplifies verification of eBPF programs.

2.3 XDP: eXpress Data Path

There are several hook points where eBPF programs can be
attached in recent Linux kernels. XDP [1, 6, 10] is another
eBPF program hook point where its attachment point is at
the lowest level of the network stack. XDP demonstrates
high performance that closed to the line rate of the device,
since the eBPF programs attached to XDP hook point are
triggered immediately in the network device driver’s packet
receiving code path. For the same reason, eBPF program in
XDP can only access the packet data and a few metadata.
XDP supports accessing to eBPF maps and tail calls, but
much less number of helper functions is available compared
to the TC hook point.

Figure 3 shows the typical workflow for installing an
eBPF program to the TC/XDP hook point, and how pack-
ets trigger eBPF execution. Clang and LLVM takes a pro-
gram written in C and compiles it down to the eBPF in-
struction set, then emits an ELF file that contains eBPF in-
structions. An eBPF loader, such as iproute, takes the ELF
file, parses the programs and maps information from it and
issues BPF syscalls to load the program. If the program
passes the BPF verifier, then it is attached to the hook point
(in this case, TC/XDP), and subsequent packets through the

TC/XDP ingress hook will trigger execution of the eBPF
programs.

2.4 AF_XDP Socket

AF_XDP is a new Linux address family that aims for
high packet I/O performance. It enables another way for
a userspace program to receive packets from kernel through
the socket APIL. For example, currently, creating a socket
with address family AF_PACKET, userspace programs can
receive/send the raw packets at the device driver layer. Al-
though the AF_PACKET family has been using in many
places such as tcpdump, its performance does not catch
up with the recent high speed network devices, such as
40G/100G NICs. Performance evaluation [13] of AF_PACKET
shows less than 2 million packets per second using single
core.

AF_XDP was proposed and upstreamed to Linux kernel
since 4.18 [7]. The core idea behind the AF_XDP is to lever-
age the XDP eBPF program’s early access to the raw packet,
and provide a high speed channel from the XDP directly to
a userspace socket interface. In other word, AF_XDP socket
family connects the XDP packet receiving/sending path to
the userspace, by-passing the rest of the Linux networking
stacks. An AF_XDP socket, called XSK, is created by using
the normal socket() system call. Unlike AF_PACKET which
uses the send() and receive() syscalls with packet buffer as
parameter, XSK introduces two rings in userspace: the Rx
ring and the Tx ring. These two rings are per-XSK data struc-
ture that the userspace program needs to properly configure
and maintain in order to receive and send packets. More-
over, to provide zerocopy support for AF_XDP, all the packet
data buffers used in Tx/Rx rings are allocated from a spe-
cific memory region called umem which consists of a num-
ber of fixed size memory chunks. Two rings, the Fill ring
and the Completion ring, are associated with a umem, and a
umem can be shared between multiple XSKs. Each element
in the Rx/Tx ring or in Fill/Completion ring is a descriptor
that contains an address that points to a chunk in umem. The
address is not system’s virtual or physical address but simply
an offset within the umem memory region.

For example, to receive packets from XSK, firstly, the
userspace program firstly pushes a set of descriptors point-
ing to empty packet buffer into the Fill ring. When a packet
arrives, kernel pops descriptors from the Fill ring, fills in the
data into the memory chunks pointed by the descriptors, and
pushes the descriptors back to the Rx ring. The userspace
program then checks the Rx ring, fetches the packet data
from the descriptors, and refills the empty buffer back to the
Fill ring structure, so that kernel can fill in new incoming
packets later on. For sending packets, the userspace program
pushes a set of descriptors that point to the packet buffers
to the Tx ring, then issues sendmsg() system call. Kernel
consumes packet buffers asscoaited with the Tx ring, and
pushes transmitted descriptors to the Completion ring. The
userspace program then checks the Completion ring to deter-



mine whether the packets have been sent. In summary, XSK
users need to properly program following four rings:

e Fill ring: for users to fill umem addresses to kernel for
receiving packets.

e Rx ring: for users to access received packets.
e Tx ring: for users to place packets needed to be sent.

e Completion ring: for users to check if packets are sent.

Unlike AF_PACKET which is bound to entire netdev, the
binding of XSK is more fine-grained. XSK is bound to a
specific queue on a device, so only the traffic sent to the
queue shows up in the XSK.

3. OVS eBPF Datapath
3.1 eBPF Configuration and Maps

The OVS eBPF datapath consists of one ELF-formatted ob-
ject file which provides the full functionality of an OVS data-
path. This object defines a set of maps and a set of eBPF pro-
grams which implement a subset of the datapath functional-
ity. To bootstrap, we load the eBPF program into the kernel
using iproute. One of the programs is marked within the
ELF file to indicate that it should be attached to the hook
point; the other programs are only executed via tail calls
rooted in the eBPF hook point. The ELF file also defines
multiple persistent eBPF maps, which are pinned to the BPF
filesystem [2] for sharing between different eBPF programs
and ovs-vswitchd. The OVS datapath requires the follow-
ing eBPF maps:

¢ Flow key. This is the internal representation of the pro-
tocol headers and metadata for the current packet being
processed.

e Flow Table. This is a hash table whose key is the 32-
bit hash value of the flow key, from both packet and its
metadata, and value equals an array of actions to execute
upon the flow.

Stats Table. This is similar to the flow table, but rather
than holding an array of actions to execute for the packet,
it contains packet and byte statistics for the flow.

Perf Ring Buffer [3, 5]. The perf event map allows
an eBPF program to put user-defined data into a ring
buffer which may be read from a userspace program.
ovs-vswitchd memory maps this ring buffer to read
packets and metadata from the eBPF program for flow
miss upcall processing.

® Program Array. This map allows eBPF programs to tail
call other eBPF programs. When the BPF loader inserts
eBPF programs into the kernel, it assigns unique indexes
for each program and stores these into the map. At run
time, an eBPF program will tail call another program by
referring to an index within this map.

The OVS eBPF program is triggered by the TC ingress
hook associated with a particular network device. Multiple
instances of the same eBPF program may be triggered simul-
taneously on different cores which are receiving traffic from
different network devices. The eBPF maps, unless specified,
have a single instance across all cores. Access to map en-
tries are protected by the kernel RCU [15] mechanism which
makes it safe to read concurrently. However, there are no
built-in mechanisms to protect writers to the maps. For the
flow table map, OVS avoids the race by ensuring that only
ovs-vswitchd inserts or removes elements from the map
from a single thread. For flow statistics, atomic operations
are used to avoid race conditions. Other maps such as the
flow key perf ring buffer maps use per-cpu instances to man-
age synchronization.

3.2 Header Parsing and Lookup

When a packet arrives on the TC ingress hook, the OVS
eBPF datapath begins executing a series of programs, begin-
ning with the parser/lookup program as shown in Figure 4.
The eBPF parser program consists of two components; stan-
dard protocol parsing and Linux-specific metadata parsing.
The protocol parsing is executed directly on the packet bytes
based on standardized protocols, while the platform-specific
metadata parsing must occur on the context provided by the
eBPF environment.

The resulting code will assemble the protocol headers and
metadata, collectively known as the flow key. This flow key
is then used to look for an entry in the flow table map, to get
an array of actions to execute. If there is no entry in the flow
table map, then the packet and the flow key will be written to
the perf event map for further processing by ovs-vswitchd.

3.3 Action Execution

When a lookup is successful the eBPF gets a list of actions to
be executed, such as outputting the packet to a certain port,
or pushing a VLAN tag. The list of actions is configured in
ovs-vswitchd and may be a variable length depending on
the desired network processing behaviour. For example, an
L2 switch doing unknown broadcast sends packet to all its
current ports. The OVS datapath’s actions is derived from
the OpenFlow action specification and the OVSDB schema
for ovs-vswitchd.

One might expect to intuitively write an eBPF program
to iterate across the list of actions to execute, with each it-
eration of the loop dealing with a particular action in the
list. Unfortunately, this type of iteration implies dynamic
loops, which are restricted within the eBPF forwarding
model. Moreover, the variable number of actions also im-
plies that there is no way to guarantee the bounded program
size, which is limited to 4,096 eBPF bytecode instructions.

To solve these challenges, we first break each type of ac-
tion logic into an independent eBPF program and tail call
from one eBPF action program to another, as shown in Fig-
ure 4. This alleviates the problem from having 4k instruc-
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Figure 4: The overall architecture of OVS eBPF datapath consists of multiple eBPF programs which are tail-called dynamically, maps which
are shared between eBPF programs and userspace applications, and ovs-vswitchd as the management plane for all components.

tions for the entire action list to 4k instructions per action.
Our proof-of-concept implementation shows that this limi-
tation is sufficient for all existing actions. Additionally, the
design allows each action to be implemented and verified
independently. Second, to solve the dynamic looping prob-
lem, we convert the variable length list of actions into a fixed
length 32-element array. As a result, flow table lookup al-
ways returns an array of 32 actions to be executed, and the
LLVM compiler unrolls the loop to pass the BPF verifier.
If a matching flow has less than 32 actions to execute, the
rest of the actions is no-op, and we short-cut the no-op ac-
tion execution. If a matching flow has more than 32 actions,
then the eBPF datapath delegates the execution to userspace
datapath, i.e., the slow path. For many use cases, this is suffi-
cient; there is room to further optimize this path in the future
if common cases require more than 32 actions.

Each action also requires certain action-specific metadata
to execute. For example, an output action would require an
ifindex to indicate the output interface, while a push_vlan
action needs the VLAN ID to be inserted into the VLAN tag.
To accommodate this, the array element not only contains
the action to execute, but also the metadata required by
the particular action. The size of each element must be big
enough to hold the metadata for any action, as it is a fixed
sized array. Future work may relax this requirement.

Each eBPF program executes in an isolated environment.
As a consequence of breaking the action list into individual
eBPF action programs, some state needs to be transferred
between the current eBPF program and the next. The state to
transfer from one eBPF action program to another includes
(1) The flow key, so that the currently executing eBPF action
program can lookup the flow table, and (2) The action index
in the actions list, so that the eBPF action program knows it
is executing the N'th element in the list, and at the end of its
processing, to tail-call the n 4 1th action program. Currently
eBPF could use either per-CPU maps as scratch buffers or
the context’s packet control block (cb) to pass data between
programs. In our design, we use one 32-bit value in the cb
to keep the action index, and per-cpu maps to save the flow
key.

Figure 4 also demonstrates an example eBPF execution
of a packet forwarded to port 2 as well as port mirroring

to a VLAN port with VLAN ID 100 at port 3. Once the
packet is parsed, the flow table lookup returns an action
list of output:2, push_vlan:100, output:3. At the end of the
parser+lookup program, it tail calls the eBPF output program
as the first step to kick start action execution. The execution
of this output program overwrites the caller’s stack, so it
has to look up the flow table map to retrieve the flow key,
and execute the output action. Once done, the output action
increments the action index from O to 1, saves it in cb,
and tail-calls the next action program, which is push_vlan.
The push_vlan eBPF program again looks up the flow table,
and fetches the action metadata at index 1 and executes the
push VLAN action using a BPF helper function. The third
output action follows the same procedure and finally sends
the packet out to port 3.

3.4 Flow Miss Upcall and Installation

One of the important tasks of the OVS datapath is to pass
any packet that misses its flow table to the slow path to
get instructions for further processing. In the existing OVS
kernel datapath implementation, the missed packet is sent to
ovs-vswitchd, which processes the packet, inserts a flow
into the flow table, and re-injects the packet into the kernel
datapath using the Linux generic netlink interface. For the
eBPF datapath, this design implies two requirements: (1) a
way for the eBPF program to communicate with userspace,
and (2) a mechanism for the userspace to re-insert packet
into the eBPF program.

To address the first requirement, we use the support
for Linux perf ring buffers and the skb_event_output ()
eBPF helper function [5] which allows the eBPF program
to pass data to the userspace through the Linux perf ring
buffer [5]. During miss upcall processing, the eBPF pro-
gram will insert the full packet and the current flow key
into the perf ring buffer. To receive the data from userspace,
ovs-vswitchd runs a thread which maps the ring buffer to
its virtual memory using mmap system call, and polls the
buffer using the poll system call. If there is incoming data
from the ring buffer, the thread is woken up, it reads from
the buffer and processes the packet and metadata. The result
of this processing will be inserted into the flow table map.
To address the second requirement, we construct a dedicated



OVS Kernel
1.4 Mpps

Linux TC
1.9 Mpps

OVS eBPF
1.12 Mpps

Linux Bridge
1.6 Mpps

Table 1: Baseline port-to-port forwarding rate using existing Linux sub-
systems and OVS kernel and eBPF.

Linux TAP device which also has the OVS eBPF datapath
program attached to it. ovs-vswitchd sends the missed
packet using an AF_PACKET socket, triggering the under-
lying eBPF program for further processing. This program is
very similar to the previously-used parser+lookup program,
with minor changes. Specifically, this packet was origi-
nally received on one device, however when ovs-vswitchd
sends the packet on the TAP device, the eBPF program is
triggered for the TAP device instead. So, the platform meta-
data for incoming port misidentifies the source as the TAP
device. To ensure that the packet lookup occurs correctly,
ovs-vswitchd prepends the port number to the beginning
of the packet data, then when the eBPF program for the
dedicated TAP device processes the packet, it will read this
port number into the metadata, then strip this port from the
packet. The resulting packet is identical to the originally-
received packet, and now the metadata will match the meta-
data originally generated by the parser+lookup the first time
the packet was received. The rest of the lookup, and actions
execution is then executed as per the description in the pre-
vious sections.

3.5 Evaluation

To quantify the performance of the OVS eBPF datapath, we
measure the packet forwarding rate in millions of packets
per second (Mpps), using 64-byte packets under different
forwarding scenarios. The hardware testbed consists of two
Intel Xeon E5 2650 servers, each with an Intel 10GbE X540-
AT2 dual port NIC, with the two ports of the Intel NIC on
one server connected to the two ports on the identical NIC on
the other server. The OVS eBPF datapath is installed on one
server, acting as a bridge to forward packets from one port
on the NIC to the other, and vice-versa. The other server
acts as packet generating host, which runs DPDK packet-
gen sending at the maximum packet rate of 14.88Mpps. This
server sends to one port to the target server, and receives
the forwarded packets on the other port. All experiments use
only one CPU core running Linux kernel 4.9-rc6.

Baseline Forwarding Performance. We start by con-
ducting a simple port-to-port packet forwarding experiment,
i.e., receiving packets from one port and outputting to the
other, using the Linux native bridge, Linux TC, and OVS
kernel datapath, as shown in Table 1. The native Linux
bridge is a simple L2 mac-learning switch with no pro-
grammability, showing the forwarding rate of 1.6 Mpps. The
OVS kernel module, which does additional flow key extrac-
tion, shows a slower forwarding rate of 1.4 Mpps. For for-
warding packets using TC, we have an eBPF program loaded
into TC, with the program only having one BPF helper func-

tion call, the bpf_skb_redirect, that redirects the incoming
packet from one interface to another. Since TC accesses the
incoming packets closest to the driver layer, it shows the
highest performance of 1.9 Mpps. Finally, we measure our
proposed OVS eBPF forwarding speed, with incoming pack-
ets traversing through an eBPF parser+lookup program, and
an output action program. Since the OVS eBPF is imple-
mented based on tail calling these additional eBPF programs
at TC, we observe the overhead of 0.78 Mpps, a reduction
from 1.9 Mpps to 1.12 Mpps.

Forwarding with action execution. To further investi-
gate the overhead, we program one additional action exe-
cuted before the packet is forwarded to the other port. Since
the Linux bridge has no programmability, we only com-
pare the OVS kernel datapath with the OVS eBPF datap-
ath. Table 2 shows forwarding packets while executing the
additional action type: hash, push_vlan, set_dst_mac, and
set_gre_tunnel, with the OVS kernel and eBPF datapaths.
The forwarding performance of these results is bounded by
the CPU cost. In the case of the hash and vlan actions, the
NIC allows the processing to be offloaded from the CPU,
resulting in minimal performance overhead for executing
these actions. As a result, the forwarding rate exhibits little
to no overhead above the baseline. Moreover, for the hash
and push_vlan actions, due to the NIC offloading of actions
processing, the datapath does not need to execute any modi-
fication to the packet contents.

The third experiment, set_dst_mac, involves altering packet
data, specifically to modify the destination MAC address.
In this case, the OVS writes stored metadata from actions
processing back to the packet. The performance in this ex-
periment drops to 0.84 Mpps. The drop of 0.28 Mpps from
baseline is the result of writing all known packet header
metadata back to the packet. With a more intelligent imple-
mentation, and by using recent improvements to the eBPF
API [4, 19], the performance gap compared with the native
kernel implementation is expected to shrink.

Finally, the set_get_tunnel action experiment yielded 0.48
Mpps, which represents the additional cost of tunnelling
traffic; such traffic must traverse the Linux network stack
twice, once for overlay traffic and once for underlay traffic.
The eBPF result is also more expensive than the existing
Linux implementation, but with a narrower performance gap
than the earlier experiments. The majority of processing in
this case occurs outside of OVS, so the overhead of the eBPF
datapath has less effect.

4. Userspace OVS with AF_XDP
4.1 Datapath and Netdev Interface

OVS provides a userspace datapath interface (dpif) imple-
mentation, called dpif-netdev. The dpif-netdev userspace
datapath receives and transmits packets from its userspace
interface. One major use case of dpif-netdev is OVS-DPDK,
where the packet reception and transmission are all con-



Action eBPF DP Kernel Overhead
DP
hash 1.12 1.34 16%
push_vlan 1.11 1.32 15%
set_dst_mac 0.84 1.28 34%
set_gre_tunnel | 0.48 0.57 8%

Table 2: Comparison of single core forwarding rate in Mpps with eBPF
and Kernel Datapath, with the additional action executed before forwarding
the packet to another port.
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Figure 5: OVS Architecture with AF_XDP

ducted in DPDK’s userspace library. The dpif-netdev is de-
signed to be agnostic to how the network device accessing
the packets, by an abstraction layer called netdev. Therefore,
packets can come from DPDK packet I/O library, a Linux
AF_PACKET socket API, or AF_XDP socket interface, as
long as each mechanism implements its own netdev inter-
face. Once dpif-netdev receives a packet, it follows the same
mechanism performing parse, lookup the flow table, and ap-
ply actions to the packet.

Figure 5 shows the architecture of userspace OVS with
AF_XDP. We implement a new netdev type for AF_XDP,
which receives and transmits packets using the XSK. We
insert a XDP program and a eBPF map which interacts with
XDP program to forward packets to the AF_XDP socket.
Once the AF_XDP netdev receives a packet, it passes the
packet to the dpif-netdev for packet processing.

4.2 AF _XDP netdev configuration
When users attach a AF_XDP netdev to an OVS bridge, for
example, by issuing the following commands:

ovs-vsctl add-br br0O
ovs-vsctl add-port brO eth0 -- \
set int ethO type="afxdp"

ovs-vswitchd does the following steps to bring up the
AF_XDP netdev:

1. Attach a XDP program to the netdev’s queue: OVS at-
taches a simple and fixed XDP program to each netdev’s

queue. The program only consists of a few lines of code,
which receives the packets and redirects them to XSK by
calling the bpf _redirect_map () helper function.

2. Create a AF_XDP socket: Call socket() syscall to create
a XSK, set up its Rx and Tx ring buffer, allocate a umem
region, and set up Fill/Completion ring of the umem.

3. Load and configure the XSK eBPF map: The XSK
eBPF maps consists of key value pairs, where key is
an u32 index and value is the file descriptor of the
XSK. ovs-vswitchd programs an entry to the map with
the key as queue id and the file descriptor, fd, of the
XSK as its value. Therefore, the XDP program calling
bpf_redirect_map will derive the corresponding XSK
with the queue id.

4. Populate the umem Fill ring: Get a couple of umem
elements and place into Fill ring.

Finally, when a AF_XDP netdev is detached or closed by
user, ovs-vswitchd closes the XSK socket, free the umem
memory region, and unload the eBPF program and map.

4.3 umem memory management

In order to properly program Rx/Tx/Fill/Completion rings,
we implement a umem memory management layer, call
umempool. It is a data structure maintaining the unused/avail-
able elements in umem with GET and PUT access APIs. We
will demonstrate the use case of umempool with packet re-
ception and transmission in the following subsections.

4.3.1 Packet Reception

Figure 6 shows how ovs-vswitchd sets up the Fill ring and
the Rx ring for receiving packets from XSK. For simplicity,
in this example, we assume that there are only eight umem
buffers, and each buffer’s size is 2KB. Initially, at step 1,
ovs-vswitchd pushes four available umem elements into the
Fill ring and waits for incoming packets. When there are
incoming packets, at step 2, the Fill ring’s four buffer el-
ements will be consumed and moved to the Rx ring. In or-
der to keep receiving packets, ovs-vswitchd gets another four
available umem elements from the umempool, and fills into
Fill ring (step 3). Then, ovs-vswitchd creates the metadata
needed for the four packet buffer {1, 2, 3, 4}, i.e., struct
dp-packet and struct dp_packet_batch, and passes to the dpif-
netdev layer for parse, lookup and action executions. Finally,
when ovs-vswitchd finishes processing the umem buffer, a
recycle mechanism is triggered to place this buffer back to
umempool (step 5). Step 5 makes sure that there are always
available elements in Fill ring, so that the underlying XDP
program in kernel can keep processing packets while the
userspace ovs-vswitchd is processing the previous received
packets on Rx ring. When step 5 finishes, ovs-vswitchd goes
back to step 2, waiting for new packets.
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Figure 6: An example of how OVS programs the Fill ring and Rx
ring when processing incoming AF_XDP packets.

0VS sending 4 packets recevied from ethl to eth2 by XSK.

(1) Get 4 free elements from eth2’s umempool, copy packet data to them

(2) Create TX descriptors and place into Tx ring
eth2 umempool
{1, 2, 3, 8}
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Compl r ...| | | | (-

(3) Issue sendmsg syscall to eth2’s XSK

(4) Packet transmission is completed
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eth2 umempool
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Compl r ...| | | | | ...

(6) Recycle the 4 packet buffers back to ethl’s umempool

Figure 7: An example of how OVS programs the COMPLETION
ring and Tx ring when processing incoming AF_XDP packets from
one netdev and sending them to another netdev.

4.3.2 Packet Transmission

Figure 7 shows the process for sending packets to the
XSK. In this example, there is one bridge and two ports,
ethl and eth2, in OVS. Both ports are configured with
AF_XDP support, and there is a flow, in_port=ethl,
actions=output:eth2 that forwards packets received
from ethl to eth2.

Initially, assume ovs-vswitchd receives four packets from
eth1’s XSK. To send packets to eth2 using eth2’s XSK, ovs-
vswitchd first gets four packet buffers, {4, 5, 6, 7} from
eth2’s umempool and copies the packet data from ethl’s
umem to eth2’s umem at {4, 5, 6, 7}. Later on, TX descrip-
tors for the four packets are created and placed into eth2’s Tx
ring (step 2). At step 3, sendmsg syscall is issued to signal
the kernel to start the transmission. As the sendmsg syscall in
XSK is asynchronous, ovs-vswitchd needs to poll the COM-
PLETION ring to make sure that these four packets have
been sent out (step 4). Once the four packets’ descriptors
show up at the COMPLETION ring, at step 5, ovs-vswitchd
recycles their umem elements back to eth2’s umempool. The
original four packet buffers from ethl are recycled back to
eth1’s umempool as well.

4.4 Performance Evaluation and Optimization

All of our performance evaluation are conducted on a test
bed consisting of two Intel Xeon ES5 2440 v2 1.9GHz
servers, each with 1 CPU socket and 8 physical cores with
hyperthreading enabled. The first server, the source server, is
served as a traffic generator. It is equipped with a Netronome
NFP-4000 40GbE device, and runs a customized traffic gen-
erator that generates 64-byte single UDP flow packets at the
rate of 19 M pps using the DPDK library. The second server,
the target server, is equipped with an Intel 40GbE XL710
single port NIC, and it runs Linux kernel 4.19-rc4 with i40e
driver supporting the AF_XDP zero copy mode [11, 12]. We
install OVS-AFXDP on the target server, and we disable the
Intel Spectre and Meltdown fixes [8, 22] for demonstrat-
ing the best performance. In addition, we enable 1GB huge
memory page support to reduce the page fault overhead.

For all our experiments, we use a microbenchmark pro-
gram, called xdpsock, as the baseline to compare with OVS-
AFXDP implementation. xdpsock is an AF_XDP sample
program that can be configured into two modes. In the rx-
drop mode, xdpsock simply drops all incoming packets with-
out any packet processing. In the 12fwd mode, xdpsock for-
wards the packet to the same port from where it is received.
In our testbed, we measure 19Mpps for xdpsock-rxdrop
and 17 M pps for xdpsock-12fwd. For OVS-AFXDP, we con-
duct two similar experiments, with OVS’s OpenFlow rule
installed as below:

® OVS-AFXDP rxdrop: Install a single OpenFlow rule to
drop every packets, e.g., in_port=ethl, actions=drop.



® OVS-AFXDP 12fwd: Install a single OpenFlow rule to
forward packet to the same port as it receives, e.g.,

in_port=ethl, actions=set_fields:eth2->in port,

output:ethl.

AF_XDP can provide the following three operation modes
depending on the device and driver support. We list the
three mode from the slowest to the fastest throughput. 1)
skb mode: works on devices using generic XDP [16], 2)
driver mode: works on devices with XDP support, and 3)
zero-copy driver mode: works on devices with XDP_XDP
zerocopy support. For all our experiments, we use the zero-
copy driver mode since it provides the best performance.

4.4.1 PMD netdev

In the beginning, our initial prototype of OVS-AFXDP only
provides 0.5M pps throughput for rxdrop. We observe that
when dropping/forwarding packets under OVS-AFXDP, two
processes below can easily reach 100% CPU utilization:

e ovs-vswitchd: This is the process that keeps doing the
send and receive steps in Figure 6 and 7.

® ksoftirqd/core_id: This is the kernel software interrupt
thread handling the incoming packets, triggering XDP
program to pass packets to the XSK, and also processing
transmission.

With further investigation using Linux perf tools, our first
improvement is to enable OVS’s Poll-Mode-Driver (PMD)
mode to the AF_XDP netdev.

In OVS’s non-PMD mode, ovs-vswitchd does packet re-
ception by putting all the receiving netdev’s file descriptors
(fd)s together and invokes the poll system call to determine
if any one of the fd is ready to perform I/O. As a result, the
polling of XSK’s fd is shared with other fds, and we ob-
served that the poll system call incurs high overhead.

Applying OVS’s PMD netdev avoids these problems and
improves the rxdrop performance from 0.5M pss to 3M pps.
This performance gain is because of reducing userspace and
kernel space context switch overhead by omitting poll sys-
tem call. That is instead of using poll system call, we imple-
ment packet reception by using PMD netdev for AFXDP, so
that ovs-vswitchd allocate a dedicated thread for each XSK’s
receive queue and the thread keeps polling the RX ring for
new packets. Currently, each round of receive polling pro-
cesses a batch up to 32 packets.

4.4.2 Memory Management and Locks

For every stage of optimizations, we use Linux perf exten-
sively, e.g., perf stat and perf record/report. With the above
PMD netdev optimization, we observe the new bottleneck
is the umempool APIs that we introduced. We introduce two
major umempool APIs, umem_elem_get(), which gets N free
element from the umempool, and umem_elem_put(), which
places back the free umem buffer to the umempool. We im-

plement three different data structures for umempool man-
agement as below.

e LIFO-list_head: We reverse the first 8-byte of a umem
chunk as a next pointer that pointing to the next avail-
able element in umempool, and implement LIFO (last in,
first out) access get/put APIs. In this design, we maintain
the list_head pointer that always points to the first avail-
able umem element, and we get and put elements from
list_head.

FIFO-ptr_ring: This design maintains an extra FIFO (first
in, first out) pointer ring that is similar to Linux kernel’s
ptr_ring. The ring is an array of elements that allocated in
a continuous memory region, where each element points
to an available umem chunk. We keep track of head and
tail pointer for the FIFO-ptr_ring. The consumer gets
elements from the tail pointer, and then the producer puts
elements back to where head pointer points to.

LIFO-ptr_array: This design is similar to Linux kernel’s
skb_array [20] where an array of pointers are allocated
in contiguous memory region. Each element in the array
points to an available memory chunk in umem. We keep
track of a head pointer to the array, and both consumer
and producer get/put elements from the head pointer.

Initially, we allocate one umem per netdev. Since there
might be multiple queues per netdev sharing the same umem,
the above three data structures require a mutex lock to pro-
tect umempool accessing. In this design, Linux perf reports
pthread mutex lock related APIs as one of the top CPU uti-
lization function. We then change our design by 1) allocating
per-queue umem region and 2) allocating one PMD thread
per queue. As a result, no lock is needed because each queue
has only one thread and its own set of umem elements.

4.4.3 Metadata Allocation

Moving forward, Linux perf shows that the packet metadata
allocation takes a lot of CPU cycles, i.e., dp_packet_init(),
dp-packet_set_data(). So instead of allocating packet meta-
data at packet reception time, we pre-allocate the packet
metadata and implement two data structures to compare their
performance:

e Embedding in packet buffer: As we already allocate 2KB
chunk for each umem packet buffer, we reserve the first
256-byte in each umem chunk as struct dp_packet and ini-
tialize the dp_packet’s packet independent fields at allo-
cation time. This is similar to the DPDK mbuf design [9],
where a single memory buffer is used for both packet data
and metadata.

e Separate from packet buffer: This design allocates a con-
tiguous memory region storing an array of packet meta-
data, and initialize their packet independent fields.

With the above design change, we find that using the
LIFO-ptr_array in Section 4.4.2 with separated packet meta-



Projects | xdpsock | OVS-AFXDP
rxdrop 19Mpps 19Mpps
12fwd 17Mpps 14Mpps

Table 3: Performance comparison of the xdpsock and OVS-AFXDP.

data allocation for metadata allocation yields the best per-
formance. It is because both data structures have better spa-
tial locality and they are more batching friendly. For exam-
ple, accessing 32 packet metadata in an array incurs less
cache misses than accessing the packet metadata in 32 umem
chunks. The ptr_array for umempool management outper-
forms the other two designs for the similar reason. With the
above design decisions, the OVS rxdrop can achieve sim-
ilar performance as the baseline xdpsock rxdrop at around
19Mpps.

4.4.4 Batching Send Syscall

With all the aforementioned optimizations, We continue
measuring the performance of OVS-AFXDP 12fwd and ob-
serve only 4 M pps, compared to 17 M pps baseline xdpsock-
12fwd. We find that the OVS PMD thread under rxdrop has
much fewer context switches compared to the 12fwd, in-
dicating that the PMD process spends much more time in
kernel space than in userspace. By using strace, we find
that the OVS-AFXDP 12fwd experiment calls sendto sys-
tem call at very high rate. It is because we design to check
the completion of send immediately after issusing send as
shown in step 3 and 4 in Figure 7. We modify this design
by calling sendmsg syscall (step 3) only when TX ring is
close to full, e.g., when 3/4 ring elements have been used.
For example, instead of issuing sendmsg syscall for a batch
of 32 packets and making sure they are finished, we only
issue send when there are 512 outstanding packets. With
this change, the OVS-AFXDP 12fwd experiment can achieve
around 14 M pps.

4.4.5 Summary

We summarize the OVS-AFXDP in Table 3. Through the
step-by-step analysis, the keys to performance improvement
are to keep packet processing in userspace to avoid kernel
userspace context switch, and allocating dedicated userspace
processes for packet processing. Moreover, standard opti-
mization techniques such as batching is critical to perfor-
mance. We observe performance boost when apply batching
to a couple of places such as issuing sendmsg syscall, packet
reception and transmission.

Although there are still rooms for improvement, we are
now working on making the patch upstream to the OVS code
base for more people to use.

5. Conclusion

This paper describes two eBPF projects related to OVS:
OVS-eBPF and OVS-AFXDP. The eBPF project originally

had the ambitious goal of replacing the fixed kernel datapath
with a dynamic datapath that may be injected on demand,
while keeping the design and operation essentially the same.
This would solve distribution and maintenance issues, as the
version of the datapath would be distributed with the OVS
userspace package; furthermore, it would outline a path to
allow OVS to continue to process packets in the kernel with-
out the use of an OVS-specific kernel module, acheiving the
goals of other recent work [17]. Collectively, this would al-
low the datapath logic to be extended and modified more
easily, while reducing the maintenance burden for that code.
Longer term, with a more flexible code base, many perfor-
mance and feature improvements could be made and more
easily, as the constraints around backwards compatibility of
the fixed kernel ABI could be relaxed.

While the basic use cases for implementing the Open-
Flow forwarding model can be achieved in a straightforward
manner in OVS-eBPF, implementing the full capabilities of
the current OVS datapath is more difficult within the bounds
of the BPF verification engine [21]. This paper explored an
additional approach which makes use of another datapath
implementation that OVS contains in userspace. Rather than
building an extensible datapath and inserting this logic into
the kernel at runtime, the packets can be efficiently directed
to userspace for network processing using AF_XDP sockets.
The userspace datapath implementation has none of the dis-
tribution, maintenance or compatibility issues that the kernel
implementation has, so at face value this appears to serve
many of the original goals of the OVS-eBPF project.

Over the course of exploring the use of AF_XDP sockets,
multiple design choices were made with the goal of opti-
mal performance in mind. Future evaluation of this project
should investigate the tradeoffs made with these decisions,
and how they affect the configuration and deployment of the
implementation. This implementation contains a lot of tech-
nical parallels with the OVS-DPDK project, which puts cer-
tain constraints on deployment such as the configuration of
devices and the dedication of CPU and memory resources to
the datapath. In some deployment environments, these may
not be feasible constraints to place on OVS, and the existing
kernel implementation does not require such constraints.
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