
Bringing the Power of eBPF
to Open vSwitch

Linux Plumber 2018
William Tu, Joe Stringer, Yifeng Sun, Yi-Hung Wei

VMware Inc. and Cilium.io

1

Outline

• Introduction and Motivation
• OVS-eBPF Project
• OVS-AF_XDP Project
• Conclusion

2

What is OVS?

Fast Path

Slow Path

Datapath

ovs-vswitchd

3

SDN Controller
OpenFlow

OVS Linux Kernel Datapath

driver

Hardware

IP/routing

socket

Fast Path
in Kernel

Slow path
in userspace

OVS Kernel
module

ovs-vswitchd

4

Device
RX Hook

OVS-eBPF

5

OVS-eBPF Motivation
• Maintenance cost when adding a new datapath feature:
• Time to upstream and time to backport
• Maintain ABI compatibility between different kernel and OVS

versions.
• Different backported kernel, ex: RHEL, grsecurity patch
• Bugs in compat code are easy to introduce and often

non-obvious to fix

• Implement datapath functionalities in eBPF
• Reduce dependencies on different kernel versions
• More opportunities for experiements

6

What is eBPF?

• A way to write a restricted C program and runs in Linux kernel
• A virtual machine running in Linux kernel
• Safety guaranteed by BPF verifier

• Maps
• Efficient key/value store resides in kernel space
• Can be shared between eBPF prorgam and user space applications

• Helper Functions
• A core kernel defined set of functions for eBPF program to retrieve/push data

from/to the kernel

7

OVS-eBPF Project

ovs-vswitchd

Parse Lookup Actions

Goal
• Re-write OVS kernel datapath

entirely with eBPF
• ovs-vswitchd controls and

manages the eBPF DP
• eBPF map as channels in

between
• eBPF DP will be specific to

ovs-vswitchd

eBPF Datapath

eBPF
maps

8

driver

Hardware

IP/routing

TC hook

Slow path
in userspace

Fast Path
in Kernel

Headers/Metadata Parsing

• Define a flow key similar to struct sw_flow_key in kernel
• Parse protocols on packet data
• Parse metadata on struct __sk_buff
• Save flow key in per-cpu eBPF map

Difficulties
• Stack is heavily used
• Program is very branchy

9

Review: Flow Lookup in Kernel Datapath
Slow Path
• Ingress: lookup miss and upcall
• ovs-vswitchd receives, does flow

translation, and programs flow entry
into flow table in OVS kernel module
• OVS kernel DP installs the flow entry
• OVS kernel DP receives and executes

actions on the packet
Fast Path
• Subsequent packets hit the flow cache

Flow Table
(emc + megaflow)

ovs-vswitchd

2. miss upcall
(netlink)

Parser

3. flow installation
(netlink)

4. actions

10

1. Ingress

Flow Lookup in eBPF Datapath
Slow Path
• Ingress: lookup miss and upcall
• Perf ring buffer carries packet and its

metadata to ovs-vswitchd
• ovs-vswitchd receives, does flow

translation, and programs flow entry
into eBPF map
• ovs-vswitchd sends the packet down to

trigger lookup again
Fast Path
• Subsequent packets hit the flow cache

Flow Table
(eBPF hash map)

ovs-vswitchd

2. miss upcall
(perf ring buf)

Parser

3. flow installation
(TLV -> fixed array
-> eBPF map)

4. actions

11

Limitation on flow installation:
TLV format currently not supported in BPF verifier
Solution: Convert TLV into fixed length array

1. Ingress

Review: OVS Kernel Datapath Actions
A list of actions to execute on the packet

Example cases of DP actions
• Flooding:

• Datapath actions= output:9,output:5,output:10,…
• Mirror and push vlan:

• Datapath actions= output:3,push_vlan(vid=17,pcp=0),output:2
• Tunnel:

• Datapath actions:
set(tunnel(tun_id=0x5,src=2.2.2.2,dst=1.1.1.1,ttl=64,flags(df|key))),output:1

12

FlowTable Act1 Act2 Act3 …

eBPF Datapath Actions
A list of actions to execute on the packet

Challenges
• Limited eBPF program size (maximum 4K instructions)
• Variable number of actions: BPF disallows loops to ensure program termination
Solution:
• Make each action type an eBPF program, and tail call the next action
• Side effects: tail call has limited context and does not return
• Solution: keep action metadata and action list in a map

13

FlowTable eBPF
Act1

Map
lookup

Tail
Call

eBPF
Act2

Map
lookup …Tail

Call

Performance Evaluation

• Sender sends 64Byte, 14.88Mpps to one port, measure the

receiving packet rate at the other port

• OVS receives packets from one port, forwards to the other port

• Compare OVS kernel datapath and eBPF datapath

• Measure single flow, single core performance with Linux kernel

4.9-rc3 on OVS server

16-core Intel Xeon

E5 2650 2.4GHz

32GB memory

DPDK packet generator

Intel X3540-AT2

Dual port 10G NIC + eBPF Datapath

br0

eth1

Ingress Egress

BPFeth0

14

14.88Mpps
sender

OVS Kernel and eBPF Datapath Performance

eBPF DP Actions Mpps
Redirect(no parser, lookup, actions) 1.90
Output 1.12
Set dst_mac 1.14
Set GRE tunnel 0.48

OVS Kernel DP
Actions

Mpps

Output 1.34
Set dst_mac 1.23
Set GRE tunnel 0.57

15

All measurements are based on single flow, single core.

Conclusion and Future Work

Features
• Megaflow support and basic conntrack in progress
• Packet (de)fragmentation and ALG under discussion

Lesson Learned
• Writing large eBPF code is still hard for experienced C programmers
• Lack of debugging tools
• OVS datapath logic is difficult

16

OVS-AF_XDP

17

OVS-AF_XDP Motivation
• Pushing all OVS datapath features into eBPF is hard
• A large flow key on stack
• Variety of protocols and actions
• Dynamic number of actions applied for each flow

• Idea
• Retrieve packets from kernel as fast as possible
• Reuse the userspace datapath for flow processing
• Less kernel compatibility than OVS kernel module

18

OVS Userspace Datapath (dpif-netdev)

Userspace
Datapath

ovs-vswitchd

19

SDN Controller

Hardware
DPDK library

Both slow and fast
path in userspace

XDP and AF_XDP

• XDP: eXpress Data path
• An eBPF hook point at the network device

driver level

• AF_XDP:
• A new socket type that receives/sends raw

frames with high speed
• Use XDP program to trigger receive
• Userspace program manages Rx/Tx ring and

Fill/Completion ring.
• Zero Copy from DMA buffer to user space

memory, umem

20

From “DPDK PMD for AF_XDP”

OVS-AF_XDP Project

ovs-vswitchd
Goal
• Use AF_XDP socket as a fast

channel to usersapce OVS
datapath
• Flow processing happens in

userspace

21

Network Stacks

Hardware

User space

Driver +
XDP

Userspace
DatapathAF_XDP

socket

Kernel

AF_XDP umem and rings Introduction

23

umem memory region: multiple 2KB chunk elements

desc

Users receives packets

Users sends packets

Rx Ring

Tx Ring

For kernel to receive packets

For kernel to signal send complete

Fill Ring

Completion Ring

One Rx/Tx pair per AF_XDP socket

Descriptors
pointing to umem
elements

2KB

One Fill/Comp. pair per umem region

AF_XDP umem and rings Introduction

24

umem memory region: multiple 2KB chunk elements

desc

Users receives packets

Users sends packets

Rx Ring

Tx Ring

For kernel to receive packets

For kernel to signal send complete

Fill Ring

Completion Ring

One Rx/Tx pair per AF_XDP socket

Descriptors
pointing to umem
elements

2KB

One Fill/Comp. pair per umem region

Receive

Transmit

OVS-AF_XDP: Packet Reception (0)

25

umem consisting of 8 elements

… …Rx Ring

… …Fill Ring

addr: 1 2 3 4 5 6 7 8

Umem mempool =
{1, 2, 3, 4, 5, 6, 7, 8}

OVS-AF_XDP: Packet Reception (1)

26

X X X X

umem consisting of 8 elements

… …Rx Ring

… 1 2 3 4 …Fill Ring

addr: 1 2 3 4 5 6 7 8

Umem mempool =
{5, 6, 7, 8}

GET four elements,
program to Fill ring

X: elem in use

OVS-AFXDP: Packet Reception (2)

27

X X X X

umem consisting of 8 elements

… 1 2 3 4 …Rx Ring

… …Fill Ring

addr: 1 2 3 4 5 6 7 8

Umem mempool =
{5, 6, 7, 8}

Kernel receives four packets
Put them into the four umem chunks
Transition to Rx ring for users

X: elem in use

OVS-AFXDP: Packet Reception (3)

28

X X X X X X X X

umem consisting of 8 elements

… 1 2 3 4 …Rx Ring

… 5 6 7 8 …Fill Ring

addr: 1 2 3 4 5 6 7 8

Umem mempool =
{}

GET four elements
Program Fill ring

(so kernel can keeps receiving packets)

X: elem in use

OVS-AFXDP: Packet Reception (4)

29

X X X X X X X X

umem consisting of 8 elements

… 1 2 3 4 …Rx Ring

… 5 6 7 8 …Fill Ring

addr: 1 2 3 4 5 6 7 8

Umem mempool =
{}

OVS userspace processes packets
on Rx ring

X: elem in use

OVS-AFXDP: Packet Reception (5)

30

X X X X

umem consisting of 8 elements

… …Rx Ring

… 5 6 7 8 …Fill Ring

addr: 1 2 3 4 5 6 7 8

Umem mempool =
{1, 2, 3, 4}

OVS userspace finishes packet processing
and recycle to umempool
Back to state (1)

X: elem in use

OVS-AFXDP: Packet Transmission (0)

31

umem consisting of 8 elements

… …Completion Ring

… …Tx Ring

addr: 1 2 3 4 5 6 7 8

Umem mempool =
{1, 2, 3, 4, 5, 6, 7, 8}

OVS userspace has four packets to send

X: elem in use

OVS-AFXDP: Packet Transmission (1)

32

X X X X

umem consisting of 8 elements

… …Completion Ring

… 1 2 3 4 …Tx Ring

addr: 1 2 3 4 5 6 7 8

Umem mempool =
{5, 6, 7, 8}

GET fours element from umem
Copy packets content
Place in Tx ring

X: elem in use

OVS-AFXDP: Packet Transmission (2)

33

X X X X

umem consisting of 8 elements

… …Completion Ring

… 1 2 3 4 …Tx Ring

addr: 1 2 3 4 5 6 7 8

Umem mempool =
{5, 6, 7, 8}

Issue sendmsg() syscall
Kernel tries to send packets
on Tx ring

X: elem in use

OVS-AFXDP: Packet Transmission (3)

34

X X X X

umem consisting of 8 elements

… 1 2 3 4 …Completion Ring

… …Tx Ring

addr: 1 2 3 4 5 6 7 8

Umem mempool =
{5, 6, 7, 8}

Kernel finishes sending
Transition the four elements
to Completion Ring for users

X: elem in use

OVS-AFXDP: Packet Transmission (4)

35

umem consisting of 8 elements

… …Completion Ring

… …Tx Ring

addr: 1 2 3 4 5 6 7 8

Umem mempool =
{1, 2, 3, 4, 5, 6, 7, 8}

OVS knows send operation is done
Recycle/PUT the four elements back
to umempool

X: elem in use

Optimizations

• OVS pmd (Poll-Mode Driver) netdev for rx/tx
• Before: call poll() syscall and wait for new I/O
• After: dedicated thread to busy polling the Rx ring

• UMEM memory pool
• Fast data structure to GET and PUT umem elements

• Packet metadata allocation
• Before: allocate md when receives packets
• After: pre-allocate md and initialize it

• Batching sendmsg system call

36

Umempool Design
• umempool keeps track of available umem elements
• GET: take out N umem elements
• PUT: put back N umem elements

• Every ring access need to call umem element GET/PUT

Three designs:
• LILO-List_head: embed in umem buffer, linked by a list_head, push/pop

style
• FIFO-ptr_ring: a pointer ring with head and tail pointer
• LIFO-ptr_array: a pointer array and push/pop style access

37

LIFO-ptr_array Design

40

Multiple 2K umem chunk memory region
Idea:
• Each ptr_array element contains a umem address
• Producer: PUT elements on top and top++
• Consumer: GET elements from top and top--

ptr_array

top

X X X X X X
X X X

X X
X X

Packet Metadata Allocation
• Every packets in OVS needs metadata: struct dp_packet
• Initialize the packet data independent fields

Two designs:
1. Embedding in umem packet buffer:
• Reserve first 256-byte for struct dp_packet
• Similar to DPDK mbuf design

2. Separate from umem packet buffer:
• Allocate an array of struct dp_packet
• Similar to skb_array design

41

Packet data

Packet metadata

Packet Metadata Allocation
Embedding in umem packet buffer

42

Packet
metadata

umem buffer

Each 2K has:

Multiple 2K umem chunk memory region

Packet Metadata Allocation
Separate from umem packet buffer

43

Multiple 2K umem chunk memory region

Packet metadata in another memory region

One-to-one maps to umem

Performance Evaluation

• Sender sends 64Byte, 19Mpps to one port, measure the
receiving packet rate at the other port
• Measure single flow, single core performance with Linux

kernel 4.19-rc3 and OVS 2.9
• Enable AF_XDP Zero Copy mode

16-core Intel Xeon
E5 2650 2.4GHz
32GB memory
DPDK packet generator

Netronome
NFP-4000 + AFXDP

Userspace Datapath

br0

ingress Egress

eth0

44

19Mpps
sender

Intel XL710
40GbE

Performance Evaluation
Experiments
• OVS-AFXDP
• rxdrop: parse, lookup, and action = drop
• L2fwd: parse, lookup, and action = set_mac, output to the received port

• XDPSOCK: AF_XDP benchmark tool
• rxdrop/l2fwd: simply drop/fwd without touching packets

• LIFO-ptr_array + separate md allocation shows the best

Results

45

XDPSOCK OVS-AFXDP
rxdrop 19Mpps 19Mpps
l2fwd 17Mpps 14Mpps

Conclusion and Discussion

Future Work

• Follow up new kernel AF_XDP’s optimizations

• Try virtual devices vhost/virtio with VM-to-VM traffic

• Bring feature parity between userspace and kernel datapath

Discussion

• Usage model: # of XSK, # of queue, # of pmd/non-pmd

• Comparison with DPDK in terms of deployment difficulty

46

47

Thank You
Question?

Dislike? Like?

Batching sendmsg syscall
• Place a batch of 32 packets on TX ring, issue send syscall
• Design 1
• Check this 32 packets on completion ring, then recycle
• If not, keep issuing send
• Design 2
• Check any 32 packets on completion ring, then recycle
• If not, keep issuing send
• Design 3
• Issue sendmsg syscall

48

