
Combining kTLS and BPF for Introspection and
Policy Enforcement

Daniel Borkmann
Cilium.io

daniel@cilium.io

John Fastabend
Cilium.io

john@cilium.io

ABSTRACT
Kernel TLS is a mechanism introduced in Linux ker-
nel 4.13 to allow the datapath of a TLS session to be
encrypted in the kernel. One advantage with this mech-
anism compared to traditional user space TLS is that it
allows sendfile operations to avoid using otherwise expen-
sive bounce buffers to do encryption in user space. Addi-
tionally, as of kernel 4.17 the Linux kernel has supported
implementing socket based BPF policies by attaching
SK_MSG programs to sockets. These can be used to
monitor TCP sessions and enforce policies by allowing
or dropping messages using an administrator supplied
BPF program. However, until recently these features
have not been allowed to coexist. Users had to choose
between performance improvements offered by kTLS or
applying BPF policies using SK_MSG programs. Per-
haps worse, BPF policies operating with traditional TLS
in place, like those supported by OpenSSL, had mini-
mal visibility into TCP based messages due to receiving
already encrypted traffic. In this paper we describe the
new kTLS/BPF stack implementation and its user API.

1 INTRODUCTION
Linux, starting with kernel 4.17, provides a mechanism
to attach a BPF program to a socket. Once attached
the BPF program, known as a SK_MSG program, is
then executed on every sendmsg or sendpage call issued
on the socket. The programs can inspect, drop, redi-
rect, or modify messages as they are sent by the socket.
To accomplish this, the socket operations sendmsg and
recvmsg among others are modified to use BPF specific
calls. This is similar to the mechanism known as Upper
Layer Protocols (ULPs) used by kTLS. One primary
difference between BPF SK_MSG programs and ULPs
is the attach method. ULPs use a socket option from user
space side and currently can only be attached, not de-
tached. On the other hand, BPF SK_MSG programs use
a special purpose BPF set of maps known as a sockmap
and are modified from within the kernel.

Linux Plumbers Conference’18, Nov 2018, Vancouver, BC,
Canada
2018. :

kTLS, or kernel TLS, introduced in kernel 4.13 allows
the kernel to do the datapath encryption portion of a
TLS session. The performance benefits are described in
detail by Dave Watson1, the sendfile case shows partic-
ularly good results because buffers that previously had
to be moved through user space can now be handled
completely by the kernel. However, because both BPF
SK_MSG programs and kTLS work by using their own
set of callbacks assigned to the socket operations, the
callback structure used by sockets to implement protocol
specific handling, they previously could not coexist. This
was further complicated by kTLS and BPF SK_MSG
programs using different sets of data structures and
helpers each with their own subtleties.

To resolve this, we first provided a common set of data
structures, the struct sk_msg, and functions that can be
used by both kTLS and BPF SK_MSG as well as other
ULPs that need a common mechanism to access data
contained in scatterlists. Once kTLS and BPF SK_MSG
were converted to a common set of data structures, sup-
port for BPF SK_MSG programs was added to kTLS.
This allows kTLS and SK_MSG programs to coexist so
that BPF policies implemented in SK_MSG programs
can continue to be applied once kTLS is in use.

The rest of this paper describes the networking stack
and BPF programs that can be implemented with
SK_MSG while deploying kTLS. In Section 2, the basic
stack is outlined and a description of SK_MSG pro-
grams is given. Section 3 gives a brief introduction to
kTLS. In Section 4 the developer implementation details
are provided. Finally, in Section 5 we will talk about
remaining issues with the existing implementation and
ongoing work.

2 KTLS AND SK_MSG STACK
BPF SK_MSG allows inserting BPF policies into the
socket layer. TCP is currently the only supported socket
type. BPF SK_MSG programs and kTLS integrate with
the TCP stack as shown in Figure 1. Next we describe
the UAPI details for SK_MSG and kTLS.

1kTLS: Linux Kernel Transport Layer Security, Dave Watson. Face-
book. October 2016. https://netdevconf.org/1.2/papers/ktls.pdf

1

Linux Plumbers Conference’18, Nov 2018, Vancouver, BC, Canada Daniel Borkmann et al.

Service

Socket

BPF SK_MSG

kTLS

TCP/IP

Socket

BPF SK_MSG

kTLS

TCP/IP

Service

Socket

BPF SK_MSG

kTLS

TCP/IP

Socket

BPF SK_MSG

kTLS

TCP/IP

Service

Socket

BPF SK_MSG

kTLS

TCP/IP

Socket

BPF SK_MSG

kTLS

TCP/IP

Service

Socket

BPF SK_MSG

kTLS

TCP/IP

Socket

BPF SK_MSG

kTLS

TCP/IP

Network

Figure 1: SK_MSG programs and kTLS integrated

2.1 SK_MSG Lifetime
BPF_PROG_TYPE_SK_MSG is a BPF program type,
shortened here to SK_MSG, that is executed on every
sendmsg and sendpage call of a socket. The lifetime of a
SK_MSG program is as follows:

• The BPF program is loaded using the BPF syscall
command BPF_PROG_LOAD. After this, the
SK_MSG program is identified using its file de-
scriptor.

• A BPF map of type
BPF_MAP_TYPE_SOCKMAP (sockmap)
or BPF_MAP_TYPE_SOCKHASH (sockhash)
is created. These are key/value maps where the
key is an exact match or hash similar to the
regular BPF array or hash maps implemented in
BPF except the value is a socket in each case.

• The SK_MSG program is attached to the above
map using the bpf syscall command. At this point
any sockets added to the map will have the attached
SK_MSG program applied.

• Sockets are added to the sockmap or sockhash
maps using either the BPF syscall command
BPF_MAP_UPDATE_ELEM or from a BPF pro-
gram using the helper bpf_sock_map_update() or
bpf_sock_hash_update(). This allows BPF pro-
grams to monitor TCP state events, such as en-
tering socket state ESTABLISHED, and adds the
socket to an appropriate sockmap or sockhash map
directly from a BPF program without userspace
intervention.

• Once sockets are added to a sockmap or sockhash
with a SK_MSG program attached, the attached

SK_MSG program will be invoked on sendmsg
and sendile.

• SK_MSG programs can be detached from
a map using the BPF syscall command
BPF_PROG_DETACH. Additionally, programs
will be automatically removed if the map is de-
stroyed. Once a program is detached any existing
SK_MSG will be removed and no longer run on
that socket.

In addition to the above there are some rules that
apply to when and how SK_MSG programs are at-
tached/detached to sockets and the sockhash/sockmap
maps. First, although a socket may exist in multiple
maps no more than one of those maps may contain a
SK_MSG program2. This avoids the case where its un-
clear what program is being run on a socket. Second,
when a SK_MSG program is detached from a map it
will not be removed from sockets running in the map.
Sockets must be explicitly removed from the map to have
the SK_MSG program removed (e.g. no longer invoked
on sendmsg/sendfile) regardless of the attach/detach
state of the BPF program. This is easily done by BPF
syscall BPF_MAP_DELETE_ELEM or alternatively
if the map is removed, all sockets will be removed from
the map first and hence SK_MSG programs removed.
Finally, attaching a SK_MSG program to a map with ex-
isting sockets will not retroactively apply the SK_MSG
program to existing sockets in the map. Rather, the
SK_MSG program only applies to sockets added after
the program has been attached. For this reason for most
use cases we suggest using the above lifetime as it avoids
having to be concerned with these details. That said,
when managing many sockets and multiple policies, the
above rules may be helpful to understand the proper
workflow.

2.2 SK_MSG Program
A SK_MSG program has the following function signa-
ture,
int bpf_sk_msg_prog(struct sk_msg_md *msg)

With the sk_msg_md shown here,
struct sk_msg_md {
void *data;
void *data_end;

__u32 family;

2A socket may exist in multiple maps with different types of
programs. For example, a map with a SK_MSG program described
here and a BPF program run on the ingress path of a socket. This
is not discussed in the scope of this paper.

2

Combining kTLS and BPF Linux Plumbers Conference’18, Nov 2018, Vancouver, BC, Canada

__u32 remote_ip4;
__u32 local_ip4;
__u32 remote_ip6[4];
__u32 local_ip6[4];
__u32 remote_port;
__u32 local_port;
};

The sk_msg_md provides pointers to the message
data being passed into the program as well as a set of
metadata describing the session the data is being sent
over. Similar to other BPF program entry points, for
example XDP, direct data access must be guarded with
data bounds checks. A typical check would test for the
availability of ’N’ bytes in a message as follows,
if (data + N > data_end)
goto error;

However, for performance reasons unlike in XDP where
all data is contiguous and in a single buffer a SK_MSG
message is stored in a scatter-gather ring data structure.
Because BPF expects data access to be linear the [data,
data_end) memory may only reference the first element
in a scatterlist. In general the infrastructure will try to
maximally populate the first scatterlist element typically
packing as much data in this element as possible. How-
ever, depending on memory pressure and application
patterns, this can not be guaranteed and data may need
to be read after the first scatterlist element. To support
this, SK_MSG supports the following helper,
bpf_sk_msg_pull_data(struct sk_msg *msg,

u32 start, u32 end,
u64 flags)

This helper will update [data, data_end) pointers
to reference [start, end). When accessing this data the
helper will try to avoid expensive memory allocations
and copy operations, but if the user asks for a large
memory range (e.g. greater than a page size) or a range
that crosses a scatterlist boundary an alloc/copy may
be required. By crossing a scatterlist boundary we sim-
ply mean that start and end are part of two different
scatterlist elements. Also because we optimize for per-
formance in the zero-copy case, in the common case for
sendfile, no data will be available by default on sendfile
calls. Instead, the data pointers will be initialized as
follows [data=0, data_end=0) and users will need to use
sk_msg_pull_data() to read any necessary data. This
reflects that the infrastructure does not have enough in-
formation about the BPF program to know which bytes
will be read by the program. Thus, we force the program-
mer to be explicit. This avoids unnecessary overhead at
the cost of exposing some complexity to the user.

There are two other scenarios that can occur when
dealing with applications that are handled by the helpers
listed below. First, applications may supply less data
than is needed to reach a policy verdict. In this case
the SK_MSG program may wait until the application
provides the required remaining bytes. The second case
occurs when we reach a verdict early in a message and
want to avoid running the SK_MSG program on a spe-
cific number of future bytes. This pattern is exemplified
by a header with a large payload.
bpf_msg_cork_bytes(struct sk_msg_buff *msg, u32

bytes)
bpf_msg_apply_bytes(struct sk_msg_buff *msg, u32

bytes)

The bpf_msg_cork_bytes() helper will delay passing
any verdict to the SK_MSG infrastructure and instead
wait until the specified number of ’bytes’ have been
received before calling the SK_MSG program again to
obtain a corrected verdict.

The bpf_msg_apply_bytes() helper will skip calling
the SK_MSG program until the number of ’bytes’ spec-
ified has been sent. Using the above two helpers allow
SK_MSG programs to handle applications that (a) send
too little data or (b) large amounts of data that is not
relevant to the SK_MSG program.

The above describes basic data handling in a SK_MSG
program. Once the policy implemented by the SK_MSG
program or monitoring is complete the program can
return a verdict. The SK_MSG infrastructure sup-
ports two verdicts, SK_PASS and SK_DROP. As the
names imply SK_PASS will send the message on to
the lower layer stack which may be TCP or kTLS.
With the addition of the bpf_msg_redirect() helper
two additional types of SK_PASS can be supported
and are documented below. SK_DROP on the other
hand will return the error EACCESS to the application
and the message will not be sent. In most cases the re-
turn codes are easily understood, but when mixed with
bpf_msg_cork_bytes() and bpf_msg_apply_bytes()
there can be some subtle interactions.

First, after a bpf_msg_cork_bytes() call has been is-
sued, data exists in the scatter-gather ring from multiple
sendmsg/sendfile calls. In the event that SK_DROP is
returned when running the SK_MSG program on cork
data all data will be removed.3 This includes the data
in the buffer that was submitted from previous sendmsg
calls, potentially confusing an application that is not

3The alternative would be to not free the data, but without any
API to remove it, we could get the BPF program stuck. In the
future, we may provide flags for the BPF program to specify if it
should free all or some of the data.

3

Linux Plumbers Conference’18, Nov 2018, Vancouver, BC, Canada Daniel Borkmann et al.

prepared to deal with a EACCESS error because the
application may believe older data was successfully sent.
SK_MSG programmers should keep this in mind while
building programs that implement policies.

Next, it may not be immediately obvious, but because
the bpf_msg_apply_bytes() may indicate fewer bytes
than the application sends in a single sendmsg/sendfile
call, multiple verdicts may be given per call. In this case
if a SK_DROP verdict is reported from any part of
the message, processing of the message is halted and
the sendmsg/sendfile syscall returns. However, if the
SK_MSG program has accepted some subset of the
message sent by the sendmsg/sendfile call, we report
the number of bytes passed to the lower layer not the
EACCESS error. This allows the application to have a
consistent view of how many bytes have been consumed
by the lower layer stacks.

A note on precedence, if bpf_msg_cork_bytes() re-
quests N bytes and bpf_msg_apply_bytes() specifies
M bytes in the same BPF program, first N bytes
will be corked and then the M bytes specified from
bpf_msg_apply_bytes() will be considered. However,
the BPF program will always be called after cork bytes
is reached regardless if the apply bytes is larger. The
rational is that bpf_msg_cork_bytes() has a higher
precedence than bpf_msg_apply_bytes(). SK_MSG
programs will need to consider this when mixing the two
helpers. In practice we have found that this seldomly
happens and best programming practices should dic-
tate avoiding having outstanding bpf_msg_cork_bytes()
and bpf_msg_apply_bytes() on the same message.

In addition to indicating the message is to be allowed,
SK_PASS can also be used to redirect a message to
another socket when paired with one of the redirect
helpers.

2.3 SK_MSG Redirect

int bpf_msg_redirect_map(struct sk_msg_buff *msg,
struct bpf_map *map, u31 key, u64 flags)

int bpf_msg_redirect_hash(struct sk_msg_buff *msg,
struct bpf_map *map, void *key, u63 flags)

The bpf_msg_redirect_map() helper is used with
a map of type BPF_MAP_TYPE_SOCK_MAP and
bpf_msg_redirect_hash() is used with a map type of
BPF_MAP_TYPE_SOCK_HASH. Multiple helpers
exist to aid the BPF verifier in type checking. In
each helper the ’key’ is used to lookup a socket to
redirect to within the corresponding map. Two flags,
BPF_F_INGRESS and BPF_F_EGRESS, influence if
the redirect should send the message on the EGRESS
path or the INGRESS path. On the egress path the

message is submitted to the lower layer of the specified
socket, which at this time may be TCP or kTLS. On the
ingress path, the message is put into a message receive
queue that the application will read from using standard
recvmsg semantics.

Finally, the last SK_MSG program helper which is spe-
cific to SK_MSG programs is bpf_msg_push_data().
This helper is used to push bytes into a message. Typi-
cal use cases include adding headers to a message and
inserting metadata to be read lower in the stack perhaps
by another BPF program. It can be used in combination
with any of the above helpers and/or verdicts.

This completes a brief description of the SK_MSG
UAPI. For further details, the kernel source UAPI doc-
umentation has additional description of each helper
and verdict. Sample SK_MSG programs exist in the
Linux kernel tree along with test programs which may
provide some insight into expected behavior. Finally, for
a container network security example, much of which mo-
tivated this work, review Cilium 4 which uses SK_MSG
program types.
3 KTLS
kTLS, or kernel TLS, allows the Linux kernel to perform
the datapath operations of TLS, but the more complex
TLS handshake is kept in userspace. This allows ap-
plications to avoid bounce buffers in user space when
implementing sendfile type workloads. Removing con-
text switches and copies gives performance improvements
especially when considering tail latencies 5.

For most applications kTLS will be transparently en-
abled by the SSL library being used. OpenSSL, for ex-
ample, can enable kTLS using a socket option as shown
below. Once set data encryption and decryption takes
place in the kernel’s datapath.
struct tls12_crypto_info_aes_gcm_128 tls_tx = {
.info = {
.version = TLS_1_2_VERSION,
.cipher_type = TLS_CIPHER_AES_GCM_128,

},
.key = [...], [...]

}, tls_rx = {
[...]

};
setsockopt(fd, SOL_TCP, TCP_ULP, "tls", sizeof("tls

"));
setsockopt(fd, SOL_TLS, TLS_TX, &tls_tx, sizeof(

tls_tx));

4Cilium, https://cilium.io
5kTLS: Linux Kernel Transport Layer Security, Dave Watson. Face-
book. October 2016. https://netdevconf.org/1.2/papers/ktls.pdf

4

Combining kTLS and BPF Linux Plumbers Conference’18, Nov 2018, Vancouver, BC, Canada

psock->progs.msg_parser

drop pass

sk

tls_sw_sendmsg()

tls_alloc_encrypted_msg()

sk_msg_zerocopy_from_iter(msg_pl)

ctx->open_rec or tls_get_rec()

sk_psock_msg_verdict()

tls_clone_plaintext_msg()

msg_pl
msg_en

sk_msg_memcopy_from_iter()

tls_push_record()

TCP stack

TX

 crypto

cork

Figure 2: SK_MSG with kTLS egress path

setsockopt(fd, SOL_TLS, TLS_RX, &tls_rx, sizeof(
tls_rx));

kTLS at the time of this writing support TLS 1.2 with
AES-GCM and 128 bit of keysize.

Further details are available in kernel Documentation
in Documentation/networking/tls.txt.

4 IMPLEMENTATION
Sockmap and kTLS when used together or separately,
starting with Linux kernel 4.20, use the struct sk_msg
as their base data structure to track data and metadata.
The sk_msg structure is listed below. It is primarily a
ring buffer of scatterlist elements with associated meta-
data containing the current context. Each scatterlist
element points to data provided by the user. This data
may be zero-copied or not depending on context, this is
tracked in the sk_msg copy field. For example, data from
a sendfile call will not be copied until the BPF program
requests access to it. If it has not been copied, BPF pro-
grams may not read or write the data. This is required
to avoid applications from modifying shared data during
or after a BPF program has accessed the memory. The
helper, documented in Section 2, sk_msg_pull() can be
used to copy the data for reading if the BPF program
needs to read the data. This implementation detail was
chosen to optimize zero-copy where possible because in
general it is unknown which bytes the BPF program
may read at program load time. This is also analogous
to tc BPF programs using direct packet access when

they need to pull in non-linear data from the skb upon
demand through the BPF helper bpf_skb_pull_data().
struct sk_msg_sg {
u32 start;
u32 curr;
u32 end;
u32 size;
u32 copybreak;
bool copy[MAX_MSG_FRAGS];
/* The extra element is used for chaining the
* front and sections when the list becomes
* partitioned (e.g. end < start). The crypto
* APIs require the chaining.
*/
struct scatterlist data[MAX_MSG_FRAGS + 1];
};

struct sk_msg {
struct sk_msg_sg sg;
void *data;
void *data_end;
u32 apply_bytes;
u32 cork_bytes;
u32 flags;
struct sk_buff *skb;
struct sock *sk_redir;
struct sock *sk;
struct list_head list;
};

We chose to implement sk_msg as a fixed size ring
buffer to minimize runtime allocations as well as to
simplify the implementation. It is possible that a future
version may support chained buffers, which would allow
the ring to grow as needed instead, if the buffer limits
are reached where the user will receive a EAGAIN error.

When kTLS and SK_MSG programs are used to-
gether Figure 2 shows the packet egress flow. First, a
TLS context is created for the message, next we build the
sk_msg_sg using a zero-copy iterator if possible. The
data will later be copied during encryption before re-
turning to the application. If the zero-copy iterator fails,
then a full copy will be performed. Once the sk_msg_sg
is completed, it is passed to the BPF verdict engine
sk_psock_msg_verdict(). This will ensure all required
cork data is available and if there are any outstanding
applied data counters. However, if cork data counters in-
dicate more data is needed, the sk_msg_sg will then be
buffered and the SK_MSG program will not be executed
until specified bytes are available. Similarly, if it is de-
termined by the apply bytes counter that the SK_MSG
program does not need to run, sk_psock_msg_verdict()

5

Linux Plumbers Conference’18, Nov 2018, Vancouver, BC, Canada Daniel Borkmann et al.

will also be skipped. Otherwise, assuming the above two
conditions are met, the SK_MSG program will be run.
Once a verdict is reached the data will either be sent
to the TLS encryption block, assuming SK_PASS or
dropped if SK_DROP is received.

5 CONCLUSION
The above provides a detailed description of the kTLS
and SK_MSG BPF program interaction. The above
implementation is sufficient to meet many practical use
cases, such as those in use by Cilium. Further, this allows
network policy and TLS to coexist, something that until
this work has not been possible without complicated
middlebox and key distributions.

However, the reader may have noticed the above only
addresses the egress path. The ingress path although
supported by kTLS and with a different but similar
BPF hook similar policies to those described above can
be applied. Unfortunately, these two programs can not
yet be used together. The main barrier to this support
is kTLS uses a BPF hook to build complete messages.
This hook happens to be the same hook used by the
BPF infrastructure to implement its policies. At the
moment we have two challenges, first we have no way
to run multiple programs at this hook. Second if BPF
and kTLS have conflicting policies those would need to
be resolved. We plan to address this in a future kernel
release.

Another limitation is that the current kTLS imple-
mentation only supports TLS1.2 with 128 bit key sizes.
However, kTLS is designed to allow additional key sizes
and can be extended to TLS1.3. This will be addressed
in future kernels releases as well.

Otherwise, there are a handful of performance opti-
mizations that can be implemented in both the TLS
and SK_MSG datapaths. These should help with perfor-
mance but are primarily minor. To date we have mostly
focused on functionality and have spent little time micro-
optimizing the stack. We expect this line of work will
prove useful for performance metrics, but will not have
any user visible API changes.

Finally, SK_MSG programs currently support a lim-
ited set of BPF helpers. We have identified a handful
of additional helpers that may be useful when building
BPF policies. For example retrieving the cgroup id may
be useful for building Cgroup aware policies. We expect
as more policies are built more helpers will likely be
needed.

In summary, we have enabled SK_MSG programs
and kTLS so that they can now co-exist as of the Linux
kernel 4.20. This allows message level policies, like those

typically used by microservices, to be exposed transpar-
ently to the applications even when TLS is in use. As
far as we are aware, this is the first such implementation
of its kind. We expect this to become used more widely
as the 4.20 Linux kernel becomes generally available.

6 ACKNOWLEDGMENTS
The authors would like to thank Alexei Starovoitov,
David S. Miller, and Eric Dumazet for review and feed-
back of this work both on the patch submissions, but
also on the early designs. Thomas Graf for identifying
the problem space way back at the kernel’s Netconf 2017,
countless hours of discussions and reviewing/integrating
our work with Cilium. And finally, we thank everyone
we missed who provided feedback on the mailing list and
in person.

6

	Abstract
	1 Introduction
	2 kTLS and SK_MSG Stack
	2.1 SK_MSG Lifetime
	2.2 SK_MSG Program
	2.3 SK_MSG Redirect

	3 kTLS
	4 Implementation
	5 Conclusion
	6 Acknowledgments

