
Linux SCTP is catching up and going above
Marcelo Ricardo Leitner

Red Hat Inc.
marcelo.leitner@gmail.com

Xin Long
Red Hat Inc.

lucien.xin@gmail.com

Abstract—This paper describes what has been recently done
on Linux SCTP stack up to v4.19 and near future plans, from
performance optimizations to new features.

Index Terms—SCTP, lksctp, networking

I. INTRODUCTION

SCTP (Stream Control Transmission Protocol) is a protocol
that is currently defined in IETF RFC 4960 [1]. It originated
from the IETF SIGTRAN working group, intended to carry
signalling traffic over IP networks. They had requirements
for many unique features back then and it was decided that
neither UDP nor TCP would be a good fit and then SCTP
was designed. SCTP has advanced features since day 0, such
as multi-homing and multi-streaming.

The challenge has been on keeping up with the develop-
ments done on TCP, like overall stack optimizations (fast
paths, for example) and congestion control developments (e.g.,
buffer accounting and its impact on rwnd/cwnd), and also
to have more support from hardware vendors. Currently,
Linux SCTP is not able to achieve similar transfer rates
as TCP. While virtually every NIC out there can do TCP
checksumming, there is only a few that can do SCTP CRC32c
offloading.

The gap is not small, but we are trying to reduce it. In this
paper we go through the recent developments done on SCTP
stack and list our near future plans too.

Even though this paper was submitted by us both, we
use ’we’ throughout this document but meaning ’we’ as in
all SCTP contributors. Most of the work documented here
was performed by us, Xin and Marcelo, yet there were
contributions from the community, especially in the form of
code reviews, and for those our sincere thanks.

A. Recap on SCTP

SCTP works with associations between endpoints. That is,
an endpoint is the logical sender/receiver of SCTP packets
and consists of a set of eligible address:port tuples (and a mix
of IPv4 and IPv6 is allowed). The path between address:port
from one endpoint to one address:port of the other endpoint
is called transport. An association, a protocol relationship
between endpoints, consists of one or more transports, though
as per RFC 4960 only one transport can be actively used for
sending new data at a time.

SCTP negotiates some features during association establish-
ment, including the number of streams that will be used on it.
Streams are a way of multiplexing the association. Messages

Fig. 1. Linux SCTP state machine.

sent on stream 0 are independent of messages sent on stream
1 and reordering amongst streams may happen, but not within
a given stream.

B. Overview on Linux SCTP stack

Linux SCTP stack differs quite a lot from what we have
for UDP or TCP. On the latter the code is more streamlined,
allowing the creation of hot paths, while in the former we use
a central state machine to process all incoming packets, events
and operations. Fig. 1 illustrates it.

Everything goes through it. A sendmsg system call, for
example, is split into two parts. The first deals with the user
data and is done right away. But actually enqueueing the new
message(s) for sending, that is done via the state machine
depicted in Fig. 1 and is like a second step in sendmsg
processing for SCTP.

Fig. 2 illustrates the main structs that are used in Linux
SCTP stack. The figure is updated and includes the develop-
ments that will be described later in this paper.

II. TESTING

The testing of Linux SCTP is now comprised of 3 test
suites: TAHI, lksctp-tools unit tests and the rather new sctp-
tests project.

TAHI [2] is a project whose objective is to ensure that the
implementation is in accordance with the RFCs. It uses two
systems, a control system and a DUT (Device Under Test),
which is then asserted to be compliant. It will not, for example,
stress test the stack.

lksctp-tools [3] is a userspace library of C helper functions
to ease the usage of SCTP sockets and to abstract Linux



Fig. 2. Linux SCTP main structs.

choices of implementation. SCTP CONNECTX operation, for
example, is implemented using a sockopt, to avoid creating a
new syscall for it, and then this library implements a func-
tion called ’sctp connectx’, which hides the sockopt handling
within it. Its unit tests are aimed at testing the library itself.

So we had a gap on what could be done as for testing. We
could not, for example, test Stream Schedulers implementation
properly with only these. With that in mind, we started the new
sctp-tests [4] project. In there we are collecting all test cases
that do not fit the above projects.

It is implemented using bash scripts so that test cases are
easy to write, while the framework does all the environment
setup: create net namespaces, add proper veth pairs and IP
addresses (v4 and v6). Supports client-server namespaces and
client-router-server topologies.

III. PERFORMANCE

As we alluded in the introduction, Linux SCTP performance
is far from what it can do with TCP and Fig. 3 gives an idea
of that difference.

Our current understanding is that this gap is composed of
several factors. The very first one being the fact that SCTP
protocol is in essence far more complex than TCP and the
complications that arise from that are not small.

For TCP, sending a chunk of 16kB is a direct operation
on its buffers. Segmentation is done in a way that it does
not matter if the application sent more data after that or not.
After all, it is one linear buffer. For SCTP, that implies in
more processing. On sending side, now we support Stream
Scheduling (part of RFC 8260 [5]). That means dequeuing
the next to be sent is potentially a more complex operation
than simply grabbing the first bytes out of the queue.

Receiving side is also more complicated. User messages
on different streams may get fragmented and it is SCTP
duty to defrag them and deliver to the application. Doing
GRO for SCTP has limitations that likely render it not being
worth doing. For example, unfragmented chunks are like UDP

Fig. 3. Linux SCTP performance versus Linux TCP, RHEL kernel.

packets and should not be held up without prior knowledge
that it will not add unwanted latency to the application,
limiting which applications would benefit from it.

A. Transport rhashtable

SCTP supports what we call ’one-to-many’ socket style.
That is, it can use only 1 socket for N associations under it,
similarly to how UDP works.

It was reported that when having more than 1000 associ-
ations under the same socket, CPU usage skyrocketed. That
was because we had a simple global association hash table
that hashed only local port and destination port. As all these
associations under the same socket share the same local port,
and the application was built to use the same port number on
the other 1000 peers, it caused the hash entry to be a list of
1000 elements.

The fix for this consisted in 3 parts. First, now it also hashes
destination IP address. Second, we moved to rhashtable/rhlist.
Third, we are not hashing associations anymore but transports.
Fig. 4 illustrates before and after the improvement.

Fig. 4. Hashing done before and after the improvement.



Previously, we had to traverse that list of associations and
look inside each one for a matching transport to confirm that
that is the association we wanted. Now, when receiving a
packet, finding to which association it belongs is way faster.
A query on the rhashtable will likely return a list of possible
transports. Then we look for the right local address in them
too and that is it, we already know to which association this
packet belongs.

We did not hash the local address too because SCTP does
not negotiate which combinations of its multiple addresses
the associations will use, meaning that we would have to
hash all MxN combinations. Most of these combinations often
goes just unused and does not justify the implementation
complexity that it implies on.

One side effect of this change is that association listing
on /proc was performed using the previous association hash.
Now it traverses the transport rhash and uses the primary path
information for not dumping the same association multiple
times.

B. GSO
GSO is feasible for SCTP because it does not imply in

added latencies and it does not depend on the kind of messages
that the application is using. As long as the stack is willing
to send, say, 4 packets at a time, for whichever streams the
stream scheduler decides, we can batch them all and send it
through the other layers only once.

But as usual for SCTP, some extra constraints apply. First
one is that it needs to maintain packet boundaries. There is
a stream scheduling algorithm, called Round-Robin Scheduler
per Packet (SCTP SS RR PKT, not implemented yet), which
bundles only the chunks from the same stream in a packet.
That means that if a stream is short on chunks and cannot
fill a packet, yet there is another stream with data queued,
GSO cannot work purely on packet/chunk sizes because that
would cause the first packet to have chunks from multiple
streams. There are other situations that lead to similar effect,
like chunks that cannot be bundled with others and chunks
that should appear only once in a packet. Another approach
to these would be to trigger a flush in such situations and
terminate the GSO packet when these conditions are detected,
but that is not optimal and reduces GSO effectivity.

We want to preserve packet boundaries and gso size is
not enough for that. The options that we studied so far for
using page frags were not feasible. Attempting to store packet
boundaries in it led to constriction of GSO packet maximum
size and/or having to parse the entire packet when splitting
the GSO one, as SCTP has headers that are not always at the
beginning.

For those reasons, SCTP GSO is using frag list and not
page frags. The caveat is that it is harder for drivers, including
virtio, to offload frag list.

Fig. 5–6 show how SCTP GSO works throughout the stack.

IV. DIAGNOSTICS

We added support for sock diag and, with that, enabled
ss tool to better work with SCTP sockets. Virtually any

Fig. 5. SCTP without GSO and with GSO, tx side.

Fig. 6. SCTP with GSO, tx and rx sides.

[iproute2]# ss --sctp -n -l
State Recv-Q Send-Q Local Address:Port Peer Address:Port
LISTEN 0 128 172.16.254.254:8888 *:*
LISTEN 0 5 127.0.0.1:1234 *:*
LISTEN 0 5 127.0.0.1:1234 *:*
- ESTAB 0 0 127.0.0.1%lo:1234 127.0.0.1:4321

LISTEN 0 128 172.16.254.254:8888 *:*
- ESTAB 0 0 172.16.254.254%eth1:8888 172.16.253.253:8888
- ESTAB 0 0 172.16.254.254%eth1:8888 172.16.1.1:8888
- ESTAB 0 0 172.16.254.254%eth1:8888 172.16.1.2:8888
- ESTAB 0 0 172.16.254.254%eth1:8888 172.16.2.1:8888
- ESTAB 0 0 172.16.254.254%eth1:8888 172.16.2.2:8888
- ESTAB 0 0 172.16.254.254%eth1:8888 172.16.3.1:8888
- ESTAB 0 0 172.16.254.254%eth1:8888 172.16.3.2:8888

LISTEN 0 0 127.0.0.1:4321 *:*
- ESTAB 0 0 127.0.0.1%lo:4321 127.0.0.1:1234

[iproute2]# ss -Snai
State Recv-Q Send-Q Local Address:Port Peer Address:Port
LISTEN 0 1 127.0.0.1:27375 *:*
locals:127.0.0.1,192.168.42.2, v4mapped:1
ESTAB 0 0 127.0.0.1:37636 127.0.0.1:27375
locals:0.0.0.0, v4mapped:1

Fig. 7. Sample outputs of ss using the new sock diag interface.

information on the sockets and associations can be retrieved
using it. Fig. 7 has 2 samples on ss outputs already using it.

For an extensive list on what is returned, please consult the
struct sctp info.

V. IMPORTANT FIXES

Dst source address selection: SCTP is likely to incorrectly
choose source address if socket is bound to secondary ad-
dresses. This fix adds a new check that checks if such src
address belongs to the interface that routing identified as
output.

Rwnd improvements: SCTP rcvbuf handling works with
a fixed ratio of overhead and payload which can result in



Fig. 8. Round-Robin Scheduler with User Message Interleaving.

overestimating the available buffer and thus the announcing
of a rwnd bigger than what we can actually use. In some
particular conditions it could trigger a situation on which it
would not be able to grow the window back to a decent amount
once it reached zero window.

PMTU discovery (critical) fixes: if the socket was busy
when receiving the ICMP, it would not store the MTU in-
formation from the ICMP packet for later processing. Also,
when receiving such ICMP on a one-to-many style socket, it
was not updating the right dst entry.

Partial reliability fixes: remaining fragments should never be
abandoned if any fragment has been sent out. All the remaining
fragments must be abandoned if any fragment was abandoned.

Code refactors: rewrote many huge core functions like
sctp sendmsg(), sctp outq flush(), sctp packet transmit();
Improved MTU processing code; Fix many structures defi-
nition and type cast errors.

VI. NEW FEATURES

A. Stream Schedulers and User Message Interleaving (RFC
8260)

Stream Schedulers are used in TX side to choose which
stream’s data should be sent next according to a certain sched-
uler set by the user. There are 6 stream schedulers defined
in the RFC. In the Linux stack we’ve currently implemented
only FCFS, RR and PRIO. RR PKT, FC and WFQ are not
yet implemented although the implementation should be fairly
simple.

User Message Interleaving fixes the head of line blocking
issue described in the first part of Fig. 8: if the stream 1 had
a higher priority than stream 0 but its messages were queued
right after the stream 0 (by another thread, for instance), a
head of line blocking happens because now the chunks from
stream 1 must wait for the chunks from stream 0 to get sent
(but not necessarily acked) to only then send the chunks from
stream 1.

Fig. 9. The three send queues in SCTP.

In the new I-Data chunk two new fields are added (MID and
FSN) and the SSN field is removed. MID (Message Identifier)
is now used to identify all chunks for a given User Message
and is also used to ensure the ordered delivery within the
stream. The FSN (Fragment Sequence Number) is only used
when fragmentation of the User Message is necessary and
is a sequence number relative to only this User Message.
Therefore, all fragments use the same MID number and the
TSN field now is only used to ensure reliability.

With these changes, it is now possible to interrupt the
sending of the message 0 on stream 0 in order to send
something else. So in the previous example but now using
the new I-Data chunks, they get scheduled like in the 2nd part
of Fig. 8

B. Additional policies for Partially Reliable-SCTP (RFC
7496)

The Partially Reliable SCTP (PR-SCTP) extension defined
in RFC 3758 [6] is another important feature, which provides
a generic method for senders to abandon user messages. The
decision to abandon a user message is sender-side only and the
exact condition is called a ”PR-SCTP policy”. Three policies
have been defined in RFC 7496 [7]:

• Timed Reliability, this allows the sender to specify a
timeout for a user message after which the SCTP stack
abandons the user message.

• Limited Retransmission Policy, allows a limitation of the
number of retransmissions. Like in Fig. 9, this would be
checked when dequeuing chunks from A, when dequeu-
ing chunks from C, or when moving chunks from B to
C. It will also check on B and C after receiving a SACK.

• Priority Policy, allows removal of lower priority messages
if space for higher priority messages is needed in the
send buffer. Like in Fig. 9, it could be checked before
enqueuing chunk into A and No Enough TX Buffer, then
try to drop from C to B to A.

C. Stream Reconfiguration (RFC 6525)

Many applications that use SCTP want the ability to ”reset”
a stream. The intention of resetting a stream is to set the SSNs
of the stream back to ’zero’ with a corresponding notification
to the application layer that the reset has been performed.
Applications requiring this feature want to ”reuse” streams



Fig. 10. One SCTP association with 3 stream queues.

for different purposes but still utilize the SSN so that the
application can track the message flows.

With the feature in RFC 6525 [8], five requests could be
performed, but for some of them there are a few conditions.
Like in Fig. 10, when requesting:

• Add Outgoing Streams, no restrictions.
• Add Incoming Streams, no restrictions.
• Reset Outgoing Streams, before resetting stream 1, b has

to be empty.
• Reset Incoming Streams, the peer will send Reset Outgo-

ing Stream request for which it has to follow the above
rule.

• Reset SSN/TSN: All queues have to be empty: A, B, C,
a, b, c.

D. Additional sockets API extensions (RFC 6458)

RFC 6458 [9] adds extra socket API extensions. The func-
tion sctp sendv() provides an extensible way for an application
to communicate different send attributes to the SCTP stack
when sending a message. With the new struct sctp sendv spa
param, it would be able to set sndinfo, prinfo and authinfo at
the same time for a simple msg.

struct sctp_sendv_spa {
uint32_t sendv_flags;
struct sctp_sndinfo sendv_sndinfo;
struct sctp_prinfo sendv_prinfo;
struct sctp_authinfo sendv_authinfo;

};

The function sctp recvv() provides an extensible way for
the SCTP stack to pass up different SCTP attributes associated
with a received message to an application. With the new struct
sctp recvv rn param, it is now able to receive an event with
both rcvinfo and nxtinfo at once.

struct sctp_recvv_rn {
struct sctp_rcvinfo recvv_rcvinfo;
struct sctp_nxtinfo recvv_nxtinfo;

};

E. Full SELinux support

For security module support, three SCTP specific hooks
have been implemented:

security_sctp_assoc_request()
security_sctp_bind_connect()
security_sctp_sk_clone()

Also, the following security hook has been utilized:

security_inet_conn_established()

The usage details of these hooks are described with the
SELinux implementation in Documentation/security/SELinux-
sctp.rst

VII. SUMMARY OF CURRENT ISSUES

Frag pages should be used in SCTP GSO: As discussed
in section III-B, SCTP has to keep its packet borders in the
frags. For that it uses frag list for its GSO process with a spe-
cial gso size GSO BY FRAGS to workaround the common
process. This can be a problem in other subcomponents that
are not aware of it and frag list often cannot be supported
by hardware, which would be a problem for SCTP hardware
offload support in the future.

Reduce the number of memcpy throughout tx path: When
sending a message, there will be at least two copies to do:

1) In the syscall, from userspace to datamsg.chunks.
2) When building the packet, from datamsg.chunks to the

skb to be sent.
In a first glance, the second memcpy looks like not needed,

but experiments indicate that generating non-linear packets
by re-using datamsg.chunks instead of copying them ends up
having a big impact on CRC32c calculation to the point that
it defeats the purpose.

When sending large messages, SCTP will do the chunk-
ing right when copying from userspace. This triggers more
memory allocations than of a single copy and if an MTU
change happens in between, SCTP will have to resort to IP
fragmentation.

The long-term project is SCTP zero copy, if the issues with
CRC32c get solved.

VIII. FUTURE PLANS

Other features from Draft RFCs: SCTP NAT and CMT are
two big features that still need to be done for Linux SCTP,
and both are multi-homing related. We have started them for
quite a long time and have the working prototypes.

SCTP Performance Improvement: This includes rwnd/cwnd
management, snd/rcvbuf auto-tuning and the optimization for
some cpu-consuming functions like sctp outq sack(). This
should also include SCTP GSO improvement and zero copy
implementation.

Introduction of a congestion control framework: Without
this, users can use only one algorithm. A similar one to TCP’s
should be added for SCTP as well.

GSO Offload on hardware proposal: There is no NIC
supporting GSO hardware offload for SCTP yet so far and
no standard on how to implement it either. SCTP GSO in
general was not considered a good model for offloading and
even virtio had issues with it. Some changes will be needed
in order to make hardware offloading feasible.

Userspace tools development: lksctp-tools and sctp-tests are
the two main userspace tools, which provide some interfaces
for users and some unit/regression test cases for developers.
We are planning to improve the code quality for lksctp-tools
and add more test cases into sctp-tests.



REFERENCES

[1] “Stream Control Transmission Protocol,” RFC 4960, Sep. 2007. [Online].
Available: https://rfc-editor.org/rfc/rfc4960.txt

[2] “TAHI branch being used at Red Hat.” [Online]. Available:
https://github.com/jijianwen/deprecated-sctp

[3] “lksctp-tools project.” [Online]. Available: https://github.com/sctp/lksctp-
tools

[4] “sctp-tests project.” [Online]. Available: https://github.com/sctp/sctp-tests
[5] R. R. Stewart, M. Txen, S. Loreto, and R. Seggelmann, “Stream

Schedulers and User Message Interleaving for the Stream Control
Transmission Protocol,” RFC 8260, Nov. 2017. [Online]. Available:
https://rfc-editor.org/rfc/rfc8260.txt

[6] D. M. A. Ramalho, M. Txen, and P. Conrad, “Stream Control
Transmission Protocol (SCTP) Partial Reliability Extension,” RFC 3758,
May 2004. [Online]. Available: https://rfc-editor.org/rfc/rfc3758.txt

[7] M. Txen, R. Seggelmann, R. R. Stewart, and S. Loreto, “Additional
Policies for the Partially Reliable Stream Control Transmission Protocol
Extension,” RFC 7496, Apr. 2015. [Online]. Available: https://rfc-
editor.org/rfc/rfc7496.txt

[8] R. R. Stewart, M. Txen, and P. Lei, “Stream Control Transmission
Protocol (SCTP) Stream Reconfiguration,” RFC 6525, Mar. 2012.
[Online]. Available: https://rfc-editor.org/rfc/rfc6525.txt

[9] M. Txen, V. Yasevich, P. Lei, R. R. Stewart, and K. Poon, “Sockets API
Extensions for the Stream Control Transmission Protocol (SCTP),” RFC
6458, Dec. 2011. [Online]. Available: https://rfc-editor.org/rfc/rfc6458.txt


