Accelerating XDP Programs Using HW-based Hints

Peter P. Waskiewicz Jr.
Intel
Hillsboro, OR, USA
peter.waskiewicz.jr@intel.com

Abstract

This talk is a continuation of the initial XDP HW-based hints
work presented at NetDev 2.2 in Seoul, South Korea.

It will start with focus on showcasing new prototypes to allow
an XDP program to request required HW-generated metadata
hints from a NIC. The talk will show how the hints are gener-
ated by the NIC and what are the performance characteristics
for various XDP applications. We also want to demonstrate
how such a metadata can be helpful for applications that use
AF_XDP sockets.

The talk with then discuss planned upstreaming thoughts, and
look to generate more discussion around implementation de-
tails, programming flows, etc., with the larger audience from
the community.

Keywords

networking, kernel, ebpf, xdp, offloads, performance

Introduction

XDP continues to evolve and grow in its capabilities and fea-
tures for a growing number of workload types. In order to
continue maximizing the efficiency and performance of XDP,
focus on offloading pieces of the processing to hardware is
key. Initially shared at NetDev 2.2 in Seoul, South Korea
in Nov. 2017 (citation), the initial proposal explored a sim-
ple theoretical case of improving XDP performance using
hardware-provided metadata. This paper will continue that
exploration, which will cover:

e How does this HW-provided metadata help real-world
XDP applications?

e What happens to performance when hardware is actually
generating this metadata inline with packet data, versus
through descriptors or synthesized in the driver itself?

e What new applications should be focused on next?

e How can BPF Type Format (BTF) be used to program
which HW-provided metadata XDP applications wish an
underlying driver/device to generate and present to the ap-
plication?

Neerav Parikh
Intel

Hillsboro, OR, USA
neerav.parikh@intel.com

HW Offloaded Hints From Device Driver -
Recap

This section needs to be filled out still, just a brief recap of the
data showing the theory of what is possible. But show where
it has holes without real-world application analysis, yet.

25000000
20000000
15000000
10000000

5000000

0 .

B X0PL(1Q, no JIT) mXDP3 (10, no JIT)
XOPL(1Q, IT) | XDP3 (10,

packets s
¥DP_HINTS (10, na JIT)
W XDP_HINTS(1Q, JIT)

Figure 1: XDP With and Without HW Hints

Real-World Application: Layer 4 Load
Balancer

One of the most effective applications that XDP can support
is a network load balancer. Facebook released their Katran
load balancer as open-source (citation) which at its core
is an XDP application. This is what they employ as their
main edge load balancer, which showcases how effective
XDP is by running one of the largest data centers in the world.

Using a simple version of this layer 4 (L4) load bal-
ancer, instrumentation was done to the i40e driver (citation
to git tree) and to the simple L4 LB to consume metadata that
was generated by the device. In this scenario, the metadata
was inserted into the data_meta section of the xdp_buff by
the driver via memcpy (), as the i40e device in use does not
currently have the ability to DMA metadata prior to packet
data. So consider this metadata partially synthesized.

The metadata that was synthesized and provided was a
combination of packet type (as identified by the i40e hard-
ware), and a tuple that included TCP/UDP source/destination



ports, IP addresses, and the packet hash index (RSS)
generated by hardware.

Without state or connection tracking

XDP L4 LB - with no state tracking

packets /s

16,000,000
14,000,000
12,000,000
10,000,000
8,000,000
6,000,000
4,000,000
2,000,000

0 . -
mXDP LB No Hints (1Q) mXDP LB - Hints Type 1 (1Q) = XDP LB - Hints Type 2 {1Q)

mXDP LB No Hints (4Q) XDP LB - Hints Type 1 (4Q) m XDP LB - Hints Type 2 (4Q)

Figure 2: L4 LB with Hints, No State Tracking

In Figure 2, the data is showing performance of the L4 LB
across various configurations.

In Type 1 Hints, the metadata being provided by the
driver is the packet type (e.g. IPv4/TCP, IPv6/UDP, etc.).
These packet types are what the i40e hardware identifies off
the wire, and are not yet standardized in the network stack.
However, the L4 LB is modified in this situation to match the
i40e packet types.

In Type 2 Hints, the metadata being provided by the
driver is metadata from Type 1, but then also includes the
Source/Destination Port, Source/Destination IP Addresses,
and the packet index type (RSS) generated by the hardware.

These tests are running in a stateless configuration, meaning,
the XDP application is not maintaining any connection
state tracking. In other words, there are no map entries
being created for new connections, and map entries being
destroyed on gracefully closed connections. This eliminates
a large amount of overhead, and can be seen in the scalability
of the testing a 4 queues with Type 2 hints, running at
approximately 14 million packets/second. Compare this to
no driver-provided hints with 4 queues, and the test can run
at roughly half the performance, or 7 million packets/second.

With State and Connection Tracking

In Figure 3, a more real-world scenario is presented for the
L4 LB. This includes the tracking of connections and state of
those connections, which will require many more accesses to
the eBPF maps. The metadata presented is the same as in the
tests without connection and state tracking.

Between the two main tests, each using 4 queues, Type
2 hints and no hints at all perform the same, approximately
8.1 million packets/second. Unfortunately the large number
of map hits are the majority of the execution pipeline,
where the HW-generated metadata hints cannot help in this
situation. The gains seen in the data processing of the actual
packet are just a fraction of the overall cost to the load

XDP L4 LB - with state tracking

10,000,000
8,000,000
6,000,000

4,000,000

2,000,000 -
0

m XDP LB No Hints (1Q)

packets /s
XDP LB - Hints Type 1 (1Q) m XDP LB - Hints Type 2 (1Q)

m XDP LB No Hints (4Q) m XDP LB - Hints Type 1 (4Q) ® XDP LB - Hints Type 2 (4Q)

Figure 3: L4 LB with Hints, With State Tracking

balancer. In other words, with state tracking, a L4 LB with
this approach using these tests with synthesized hints will
not see much benefit or performance gain.

Projected Performance Increase

In the stateless and stateful L4 LB tests, the method of
generating the metadata inside the xdp.buff struct was
to memcpy () the data into the data_meta section of the
payload. This isnt the most ideal situation, since this can
more than certainly cause cache misses, and incur additional
overhead while trying to process data.

As seen in Figure jinsert new figure here;, extrapola-
tion can be done by breaking down cycle counts for the
stateful L4 LB tests. Observing the number of cycles being
spent in the i40e driver to synthesize the metadata, and the
subsequent memcpy () s of information into the xdp buff
metadata payload, cycles are available to save if the underly-
ing hardware placed the metadata directly into the xdp buff
during DMA. With the dataset from the stateful tests, that
could provide an addition 5% throughput in the Type 2 Hints
with 4 queues test.

Future Application Research

Given the current challenges of little to no gain in per-
formance using Type 2 hints with XDP applications with
stateful tracking, additional applications should be con-
sidered. Distributed Denial of Service (DDoS) attacks are
very effectively mitigated using XDP, since there is no state
tracking outside of blacklist (or whitelist) ranges to drop.
The XDP application itself does not require maintenance
of the DDoS blacklist maps, and only requires lookups to
decide the packet action, where stateful trackers will also
change and update maps.

Future testing is planned for these types of applications,
where the Type 2 Hints with no state tracking is showing
significant increases in performance with the L4 LB (100%
increase).

BTF Integration: Expressing Requested Hints

At NetDev 2.2, that work explored changes to LLVM and the
entire toolchain to include a requested hints section in the



eBPF binary. This would be passed through the eBPF load
mechanisms, and then eventually intercepted and passed to
the underlying driver to program the hardware to generate the
requested hints. This was purely a proposal to get discussion

going.

With the recently-added BPF Type Format (BTF) to the
Linux kernel (citation needed), this tooling is now mostly in
place. This allows different metadata structures to be defined
through the BTF framework. However, this is just the top
half of the solution.

What is needed to finish this tooling is intercepting the
BTF structures defined for the requested metadata, and
pass that into a driver to program the underlying hardware.
Preliminary work being done by Mellanox (citation needed)
is showing progress in this space. To get to a truly flexible
model where an XDP application can request metadata
and then use what a driver provides will require this BTF
framework to evolve and mature.

Conclusion

Initial thoughts whether or not XDP could benefit from HW-
generated metadata in real-world applications are proven that
this is the case. Utilizing hardware, especially as it becomes
smarter and more flexible, will continue pushing XDPs per-
formance envelope. In the span of a year, this has moved
from a purely theoretical hope of improvement, to showing
it can help in real-world applications. The next steps needed
to make this part of the XDP core is the ability to flexibly
program the driver and hardware using the BTF framework.
And as hardware capabilities allow the DMA of metadata as
part of the packet payloads, then more XDP applications will
benefit from performance gains across the board.

Acknowledgments

We would like to acknowledge the Linux Plumbers Network-
ing Track selection committee for inviting us to submit and
present this paper.

References
Author Biographies

Peter Waskiewicz Jr (PJ) is a Senior Linux Kernel Engineer
in the Networking Division of Intel’s Communications
Group. He has maintained and helped create the igb, ixgbe,
and i40e wired Ethernet network drivers, the initial Tx
multiqueue support in the Linux kernel network stack, and
added Data Center Bridging support to the Linux kernel. He
also worked in Intel’s Open Source Technology Center on the
x86 kernel tree, enabling advanced features in the Broadwell
and Skylake microarchitectures. Prior to returning to Intel, PJ
was a Principal Engineer at NetApp in the SolidFire division,
where he was the chief Linux kernel and networking architect
for the SolidFire scale-out cloud storage platform.

Neerav Parikh is a Software Architect with Intel’s Con-
nectivity Group focusing on Ethernet Networking Software.
He has worked on Intel’s ixgbe and i40e Linux device

drivers, focusing on features related to FCoE, DCB, and
QoS. Prior to joining Intel, Neerav worked as a Technical
Architect enabling SAS/SATA/FC-based Storage software
products.



