intel.

XDP ACGELERATION USING NIC META DATA

Neerav Parikh, PJ Waskiewicz (Intel Corporation, Networking Division)
Saeed Mahameed (Mellanox)

Linux Plumbers Conference, Nov. 2018
Vancouver, BC, Canada

Network Division

Overview

+ XDP Acceleration — Netdev 2.1 Recap
XDP Performance Results

* L4 Load Balancer
* xdp_tx_ip_tunnel
XDP NIIC Rx Metadata Requirements
XDP NIC Rx Metadata Programming Model

Next steps

XDP Acceleration — Netdev 2.1 Recap

* What can present-day NIC HW do to help

= Accelerate what is being done in XDP programs in
terms of packet processing

Offset some of the CPU cycles used for packet
processing

* Keep it consistent with XDP philosophy
= Avoid kernel changes as much as possible
= Keep it HW agnostic as much as possible
= Best effort acceleration

= A framework that can change with changing needs of
packet processing

* Expose the flexibility provided by programmable packet
processing pipeline to adapt to XDP program needs

* Help design the next generation hardware to take full
advantage of XDP and the kernel framework

How do you dynamically program
the Hardware to get the XDP
program the right kind of packet
parsing help?

How to pass the packet
parsing/map lookup hints that the
HW provides with every packet into
the XDP program so that it can
benefit from it?

Netdev 2.1 Recap - Performance data

25000000

20000000
15000000
10000000

5000000 -
0

packets &

® XDP1 (1Q, no JIT) ™ XDP3 (1Q, no JIT) ® XDP_HINTS (1Q, no JIT)
XDP1(1Q,JIT) WM XDP3(1Q,JIT) ®m XDP_HINTS(1Q,JIT)

. XDP1: Linux kernel sample, parses packet
to identify protocol, count and drop

. XDP3: Zero packet parsing (best case
scenario), just drop all packets

XDP_HINTS: Uses packet type (IPv4/v6,
TCP/UDP, etc.) provided by driver as meta
data, no packet parsing, count and drop

Network Division intel” | 4

L4 Load balancer Performance

16,000,000
14,000,000
12,000,000
10,000,000
8,000,000
6,000,000
4,000,000
2,000,000
0

XDP L4 LB - with no state tracking

packets /s

m XDP LB No Hints (1Q) m XDP LB - Hints Type 1(1Q) = XDP LB - Hints Type 2 (1Q)
m XDP LB No Hints (4Q) XDP LB - Hints Type 1(4Q) m XDP LB - Hints Type 2 (4Q)

L4 LB: L4 Load Balancer sample
application with multiple Virtual IP
tunnels, forwarding packets to
destination based on hash
calculations and lookup

Hints Type 1: Protocol Type (IPv4/v6,
TCP or UDP, etc.)

Hints Type 2: Additional hints from
type 1 including packet data like
source/destination IP addresses,
source/destination ports, packet
hash index (RSS) generated by
hardware

L4 Load balancer Performance

XDP L4 LB - with state tracking

10,000,000
8,000,000
6,000,000

4,000,000

2,000,000 -
0

m XDP LB No Hints (1Q) XDP LB - Hints Type 1(1Q) m XDP LB - Hints Type 2 (1Q)

packets /s

m XDP LB No Hints (4Q) B XDP LB - Hints Type 1 (4Q) m XDP LB - Hints Type 2 (4Q)

No visible advantage in performance with
just packet parsing hints when XDP
application is doing state tracking and
connection management.

https://git.kernel.org/pub/scm/linux/kernel/git/jkirsher/next-

queue.git/log/?h=XDP-hints-EXPERIMENTAL

L4 Load balancer Performance Analysis Projected

XDP L4 LB - with no state tracking XDP L4 LB - with state tracking
4,500,000 2,500,000
4,000,000 [+7% | - -
3.500,000 2,000,000
3,000,000
2,500,000 +77% 1,500,000
[+6% | e o
2,000,000
1,000,000
1,500,000
-8%
1,000,000 500,000
500,000
0 0
XDP LB NoHints XDP LB - Hints Type XDP LB - Hints Type XDP LB NoHints XDP LB - Hints Type XDP LB - Hints Type
(1Q) 1(1Q) 2 (1Q) (1Q) 1(1Q) 2 (1Q)
I PPS without any Hints M % Improvement in PPS with %Change in PPS with SW

inline HW Hints (driver) generated hints

xdp tx_ip _tunnel with HW Flow Mark

. Modified xdp_tx_iptunnel kernel
ConnectX-5 IPv4 - XDP TX IP Tunnel - T

sample

60 . Need an extra map flow2tnl similar
to vip2tnl

20 . Setup a TC rule to mark packets

with the well-known VIP (dst ip
protocol and ds port) with a unique
flow mark

. XDP Rx Meta data includes a
flow_mark to fetch the tunnel from
flow2tnl map

Mpps

[y
N
B~

8 16

Number of Cores

Kernel 4.19 =i Kernel 4.19 + MPW + meta data offload

XDP and Rx metadata Requirements

XDP program to Rx metadata type selections:

= Legacy NICs: Fixed vendor specific meta data structures provided as Rx descriptors
or completions — Intel 82599(ixgbe), 7xx Series (i40e)

= Programmable NICs: Flexible Rx descriptors allows customization of Rx meta data
based on use-cases — Intel E800 Series (ice)

Association of Rx meta data type to Rx Queues:
= XDP Programs should run regardless of Rx meta-data enabling
— Legacy Programs should run without requiring meta data
= Granularity of configuration

— All Rx Queues - Same fixed or flexible format meta data

— Per Rx Queue - Fixed or Flexible metadata for different Rx queues for example XDP
program may need different information in terms of Rx meta-data v/s AF_XDP based
application on a given Rx queue may need different information

XDP meta data programming model

* Need mechanism to allow meta
data types or Generic type
information exchange between SW
driver and XDP programs

e Supported XDP meta data
configured at XDP program at load
time or either at compile time

Netdev 2.1
Proposal

XDP meta data programming model — Solution Options

Option #1 (Fields Offset Array)

Well known XDP meta data types, defined by the kernel

A program can request any subset of well-known meta
data fields from driver

Offset array
- The driver will fill meta data buffer with a pre-defined

order according to the requested meta data fields
(ascending order by the field enum)

- The user program will access the specific field via the
pre-defined (calculated offset array)

flow_mark = xdp->data_meta + offset_array[XDP_META_FLOW_MARK];

*Inputs from Saeed Mahameed (Mellanox)

Option #2 (BTF)

* BTF support added in 4.15+ by Facebook to provide
eBPF program and maps meta data description.

2(a)
+ Extend that to provide NIC meta data programming
to describe meta data formats with the ndo_bfp()

callback of the driver to determine if the HW can
offload/provide such a meta data or not

2(b)

* Optionally Driver + firmware keep layout of the
metadata in BTF format; that a user can query the
driver and generate normal C header file based on
BTF in the given NIC

* During sys_bpf(prog_load) the kernel checks (via
supplied BTF)

* Every NIC can have their own layout of metadata and
its own meaning of the fields, Standardize at least a
few common fields like hash

XDP meta data programming model — Pros v/s Cons of Option #2 (BTF)
compared to Options #1(Fields Offset Array)

Pros

Allows vendor defined or specific offloads to be enabled without requiring
kernel support

Meta data layout is well known to the BPF program at load time and doesn’t
need to use offsets at run-time

Cons

« XDP program has to be compile/recompiled with the correct meta data
type for given SW+FW+HW

Standardizing some fields is up to naming conventions of fields between

different NIC vendors and overlap of these fields across vendors may
create issues

*Input from Saeed Mahameed (Mellanox)

XDP Acceleration using NIC HW: Current Status

 Rx meta data WIP/RFC level patches:

* Intel (WIP):
 https://git.kernel.org/pub/scm/linux/kernel/git/jikirsher/next-queue.git/commit/?h=XDP-hints-EXPERIMENTAL

 Mellanox:

* [RFC bpf-next 0/6] XDP RX device meta data acceleration (WIP)
https://www.spinics.net/lists/netdev/msg509814.html

* [RFC bpf-next 2/6] net: xdp: RX meta data infrastructure https://www.spinics.net/lists/netdev/msg509820.html

e https://git.kernel.org/pub/scm/linux/kernel/git/saeed/linux.git/commit/?h=topic/xdp metadata&id=5f290851
5bf64d72684b2bf902acb1a8d9af2d44

* Alexei and Daniel proposal in netdev mailing list

* https://www.spinics.net/lists/netdev/msg509820.html

https://git.kernel.org/pub/scm/linux/kernel/git/jkirsher/next-queue.git/commit/?h=XDP-hints-EXPERIMENTAL
https://www.spinics.net/lists/netdev/msg509814.html
https://www.spinics.net/lists/netdev/msg509820.html
https://git.kernel.org/pub/scm/linux/kernel/git/saeed/linux.git/commit/?h=topic/xdp_metadata&id=5f2908515bf64d72684b2bf902acb1a8d9af2d44
https://www.spinics.net/lists/netdev/msg509820.html

XDP Acceleration using NIC HW: Next Steps

+ Community need to agree on the approach on Rx meta data programming model to provide
flexibility for a user across various use-cases and applications

* Chaining, Meta data placement in the xdp buffer

* Chaining can be easily achieved by calling bpf_xdp_adjust_meta helper from the chained
programs

* Having the meta data fields sitting exactly before the actual packet buffer (xdp—data) is ok, BUT !

* When bpf xdp_adjust_head is required (header rewrite), and meta data buffer is filled,
memmove(meta_data) will be required (performance hit)

* Invalidate meta data once consumed, this will break chaining

* Place meta data starting at xdp_buff.data_hard_start, complicated

*Input from Saeed Mahameed (Mellanox)

XDP Acceleration using NIC HW: Next Steps

+ Tx metadata and processing hints

* Same as Rx need way to
configure/consume Tx meta data from
applications to HW via SW drivers.

* Provide hints to take advantage of HW
offloads/accelerations like checksums,

packet processing/forwarding, QoS, etc.

* Programming Rules in NIC HW to accelerate
flow look-ups and actions:

Advantage of taking actions prior to Rx
in software (e.g. drop or forwarding to a
Rx queue)

Currently tc u32/flower or ethtool based
model for enabling HW offloads and
match-action rules. Programming model
not suitable for XDP.

Not all NICs have eBPF map-table like
semantics

Questions?

Backup

@ |

Performance improvements

* Internal testing yielded promising results
 Test setup:

Target: Intel Xeon E5-2697v2 (lvy Bridge)

Kernel: 4.14.0-rc1+ (net-next)

Network device: XXV710, 25GbE NIC, driver version 2.1.14-k
Configuration: Single Rx queue, pinned interrupt

XDP3: Zero packet parsing (best case scenario)

XDP_HINTS: Uses ptype provided by driver, no packet parsing

HW Hints

Type of HW hint | Size Description

Parsing Hints

Packet Type ule A unique numeric value that identifies an ordered chain of headers that were
discovered by the HW in a given packet.

Header offset ule Location of the start of a particular header in a given packet. Example start of
innermost L3 header.

Extracted Field variable | Example Inner most IPv6 address
value

M Offload u32 Match a packet on certain fields and the values, provide a SW marker as a hint if the
ap oL packet matches the rule

Packet

Checksum u32 A total packet Checksum Processing Hints

Packet Hash u32 Hash value calculated over specified fields and a given key for a given packet
type

Ingress Timestamp | U64 Packet timestamp as it arrives

Network Division intel” | 19

