
Network Division

Neerav Parikh, PJ Waskiewicz (Intel Corporation, Networking Division)
Saeed Mahameed (Mellanox)

Linux Plumbers Conference, Nov. 2018
Vancouver, BC, Canada

Network Division

• XDP Acceleration – Netdev 2.1 Recap
• XDP Performance Results
• L4 Load Balancer
• xdp_tx_ip_tunnel

• XDP NIIC Rx Metadata Requirements
• XDP NIC Rx Metadata Programming Model
• Next steps

Overview

2

Network Division

• What can present-day NIC HW do to help

§ Accelerate what is being done in XDP programs in
terms of packet processing

§ Offset some of the CPU cycles used for packet
processing

• Keep it consistent with XDP philosophy

§ Avoid kernel changes as much as possible

§ Keep it HW agnostic as much as possible

§ Best effort acceleration

§ A framework that can change with changing needs of
packet processing

• Expose the flexibility provided by programmable packet
processing pipeline to adapt to XDP program needs

• Help design the next generation hardware to take full
advantage of XDP and the kernel framework

• How do you dynamically program
the Hardware to get the XDP
program the right kind of packet
parsing help?

• How to pass the packet
parsing/map lookup hints that the
HW provides with every packet into
the XDP program so that it can
benefit from it?

3

XDP Acceleration – Netdev 2.1 Recap

Network Division

Netdev 2.1 Recap - Performance data

4

• XDP1: Linux kernel sample, parses packet
to identify protocol, count and drop

• XDP3: Zero packet parsing (best case
scenario), just drop all packets

• XDP_HINTS: Uses packet type (IPv4/v6,
TCP/UDP, etc.) provided by driver as meta
data, no packet parsing, count and drop

Network Division

L4 Load balancer Performance

5

0
2,000,000
4,000,000
6,000,000
8,000,000

10,000,000
12,000,000
14,000,000
16,000,000

packets /s

XDP L4 LB - with no state tracking

XDP LB No Hints (1Q) XDP LB - Hints Type 1 (1Q) XDP LB - Hints Type 2 (1Q)

XDP LB No Hints (4Q) XDP LB - Hints Type 1 (4Q) XDP LB - Hints Type 2 (4Q)

• L4 LB: L4 Load Balancer sample
application with multiple Virtual IP
tunnels, forwarding packets to
destination based on hash
calculations and lookup

• Hints Type 1: Protocol Type (IPv4/v6,
TCP or UDP, etc.)

• Hints Type 2: Additional hints from
type 1 including packet data like
source/destination IP addresses,
source/destination ports, packet
hash index (RSS) generated by
hardware

Network Division

L4 Load balancer Performance

6

No visible advantage in performance with
just packet parsing hints when XDP
application is doing state tracking and
connection management.

0

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

packets /s

XDP L4 LB - with state tracking

XDP LB No Hints (1Q) XDP LB - Hints Type 1 (1Q) XDP LB - Hints Type 2 (1Q)

XDP LB No Hints (4Q) XDP LB - Hints Type 1 (4Q) XDP LB - Hints Type 2 (4Q)

https://git.kernel.org/pub/scm/linux/kernel/git/jkirsher/next-
queue.git/log/?h=XDP-hints-EXPERIMENTAL

Network Division 7

L4 Load balancer Performance Analysis Projected

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

3,500,000

4,000,000

4,500,000

XDP LB No Hints
(1Q)

XDP LB - Hints Type
1 (1Q)

XDP LB - Hints Type
2 (1Q)

XDP L4 LB - with no state tracking

-8%

+6%

+77%

+7%

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

XDP LB No Hints
(1Q)

XDP LB - Hints Type
1 (1Q)

XDP LB - Hints Type
2 (1Q)

XDP L4 LB - with state tracking

-8%

+6%

-5%

+7%

PPS without any Hints % Improvement in PPS with
inline HW Hints

%Change in PPS with SW
(driver) generated hints

Network Division

xdp_tx_ip_tunnel with HW Flow Mark

* Saeed Mahameed (Mellanox)

8

• Modified xdp_tx_iptunnel kernel
sample

• Need an extra map flow2tnl similar
to vip2tnl

• Setup a TC rule to mark packets
with the well-known VIP (dst ip
protocol and ds port) with a unique
flow mark

• XDP Rx Meta data includes a
flow_mark to fetch the tunnel from
flow2tnl map

Network Division

XDP and Rx metadata Requirements
XDP program to Rx metadata type selections:
§ Legacy NICs: Fixed vendor specific meta data structures provided as Rx descriptors

or completions – Intel 82599(ixgbe), 7xx Series (i40e)
§ Programmable NICs: Flexible Rx descriptors allows customization of Rx meta data

based on use-cases – Intel E800 Series (ice)
Association of Rx meta data type to Rx Queues:
§ XDP Programs should run regardless of Rx meta-data enabling

– Legacy Programs should run without requiring meta data
§ Granularity of configuration

– All Rx Queues - Same fixed or flexible format meta data
– Per Rx Queue – Fixed or Flexible metadata for different Rx queues for example XDP

program may need different information in terms of Rx meta-data v/s AF_XDP based
application on a given Rx queue may need different information

9

Network Division

• Need mechanism to allow meta
data types or Generic type
information exchange between SW
driver and XDP programs

• Supported XDP meta data
configured at XDP program at load
time or either at compile time

10

XDP meta data programming model

Netdev 2.1
Proposal

Network Division

Option #1 (Fields Offset Array)
Well known XDP meta data types, defined by the kernel

A program can request any subset of well-known meta
data fields from driver

Offset array
- The driver will fill meta data buffer with a pre-defined
order according to the requested meta data fields
(ascending order by the field enum)

- The user program will access the specific field via the
pre-defined (calculated offset array)

flow_mark = xdp->data_meta + offset_array[XDP_META_FLOW_MARK];

Option #2 (BTF)
• BTF support added in 4.15+ by Facebook to provide

eBPF program and maps meta data description.

2(a)

• Extend that to provide NIC meta data programming
to describe meta data formats with the ndo_bfp()
callback of the driver to determine if the HW can
offload/provide such a meta data or not

2(b)

• Optionally Driver + firmware keep layout of the
metadata in BTF format; that a user can query the
driver and generate normal C header file based on
BTF in the given NIC

• During sys_bpf(prog_load) the kernel checks (via
supplied BTF)

• Every NIC can have their own layout of metadata and
its own meaning of the fields, Standardize at least a
few common fields like hash*Inputs from Saeed Mahameed (Mellanox)

11

XDP meta data programming model – Solution Options

Network Division

XDP meta data programming model – Pros v/s Cons of Option #2 (BTF)
compared to Options #1(Fields Offset Array)

Pros
• Allows vendor defined or specific offloads to be enabled without requiring

kernel support
• Meta data layout is well known to the BPF program at load time and doesn’t

need to use offsets at run-time
Cons
• XDP program has to be compile/recompiled with the correct meta data

type for given SW+FW+HW
• Standardizing some fields is up to naming conventions of fields between

different NIC vendors and overlap of these fields across vendors may
create issues

*Input from Saeed Mahameed (Mellanox)

12

Network Division

XDP Acceleration using NIC HW: Current Status

• Rx meta data WIP/RFC level patches:
• Intel (WIP):
• https://git.kernel.org/pub/scm/linux/kernel/git/jkirsher/next-queue.git/commit/?h=XDP-hints-EXPERIMENTAL

• Mellanox:
• [RFC bpf-next 0/6] XDP RX device meta data acceleration (WIP)

https://www.spinics.net/lists/netdev/msg509814.html

• [RFC bpf-next 2/6] net: xdp: RX meta data infrastructure https://www.spinics.net/lists/netdev/msg509820.html

• https://git.kernel.org/pub/scm/linux/kernel/git/saeed/linux.git/commit/?h=topic/xdp_metadata&id=5f290851
5bf64d72684b2bf902acb1a8d9af2d44

• Alexei and Daniel proposal in netdev mailing list
• https://www.spinics.net/lists/netdev/msg509820.html

13

https://git.kernel.org/pub/scm/linux/kernel/git/jkirsher/next-queue.git/commit/?h=XDP-hints-EXPERIMENTAL
https://www.spinics.net/lists/netdev/msg509814.html
https://www.spinics.net/lists/netdev/msg509820.html
https://git.kernel.org/pub/scm/linux/kernel/git/saeed/linux.git/commit/?h=topic/xdp_metadata&id=5f2908515bf64d72684b2bf902acb1a8d9af2d44
https://www.spinics.net/lists/netdev/msg509820.html

Network Division

XDP Acceleration using NIC HW: Next Steps
• Community need to agree on the approach on Rx meta data programming model to provide

flexibility for a user across various use-cases and applications
• Chaining, Meta data placement in the xdp buffer
• Chaining can be easily achieved by calling bpf_xdp_adjust_meta helper from the chained

programs
• Having the meta data fields sitting exactly before the actual packet buffer (xdp→data) is ok, BUT !
• When bpf_xdp_adjust_head is required (header rewrite), and meta data buffer is filled,

memmove(meta_data) will be required (performance hit)
• Invalidate meta data once consumed, this will break chaining

• Place meta data starting at xdp_buff.data_hard_start, complicated

*Input from Saeed Mahameed (Mellanox)

14

Network Division

• Tx metadata and processing hints
• Same as Rx need way to

configure/consume Tx meta data from
applications to HW via SW drivers.

• Provide hints to take advantage of HW
offloads/accelerations like checksums,
packet processing/forwarding, QoS, etc.

• Programming Rules in NIC HW to accelerate
flow look-ups and actions:
– Advantage of taking actions prior to Rx

in software (e.g. drop or forwarding to a
Rx queue)

– Currently tc u32/flower or ethtool based
model for enabling HW offloads and
match-action rules. Programming model
not suitable for XDP.

– Not all NICs have eBPF map-table like
semantics

15

XDP Acceleration using NIC HW: Next Steps

Network Division

Questions?

16

Network Division

Backup

17

Network Division

• Internal testing yielded promising results
• Test setup:

Target: Intel Xeon E5-2697v2 (Ivy Bridge)
Kernel: 4.14.0-rc1+ (net-next)
Network device: XXV710, 25GbE NIC, driver version 2.1.14-k
Configuration: Single Rx queue, pinned interrupt
XDP3: Zero packet parsing (best case scenario)
XDP_HINTS: Uses ptype provided by driver, no packet parsing

Performance improvements

18

Network Division

Type of HW hint Size Description

Packet Type U16 A unique numeric value that identifies an ordered chain of headers that were
discovered by the HW in a given packet.

Header offset U16 Location of the start of a particular header in a given packet. Example start of
innermost L3 header.

Extracted Field
value

variable Example Inner most IPv6 address

HW Hints

19

Match U32 Match a packet on certain fields and the values, provide a SW marker as a hint if the
packet matches the rule

Checksum U32 A total packet Checksum

Packet Hash U32 Hash value calculated over specified fields and a given key for a given packet
type

Ingress Timestamp U64 Packet timestamp as it arrives

Parsing Hints

Map Offload

Packet
Processing Hints

