Turning PCle Hints into Cache Hits: Enabling Smart Data Cache Injection in Linux

Wei Huang Manoj Panicker

2025 Linux Plumber Conference

Overview

About AMD SDCI

I/O performance enhancement via smarter data cache injection

Linux Kernel Integration

Available for device drivers to improve I/O efficiency and performance

Performance Benefits

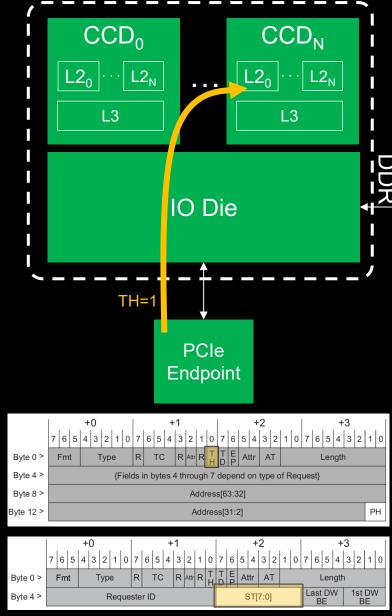
Lower latency, higher throughput, and improved memory bandwidth

Community Collaboration

More vendor and device drivers support plus new features

Background

- Fast delivery of I/O data into caches is key to improving processor performance.
- Existing cache injection technologies typically target at the last-level cache.
- Emerging chiplet-based, scale-out trends require a flexible solution.
 - Extensible with complex cache layouts
 - Allow endpoints to decide what traffic to inject
 - Standards-based approach
- Design goals
 - Open, vendor-neutral, flexible, and extensible

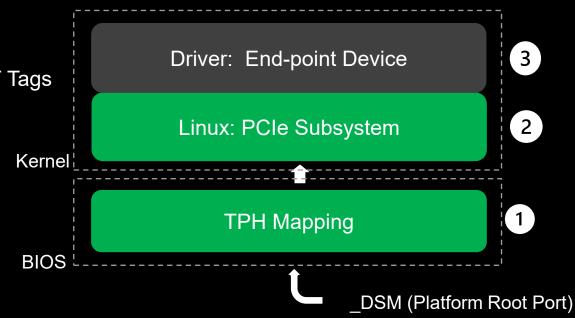

AMD's Smart Data Cache Injection (SDCI)

Design

- Based on industry standard: PCIe TLP Processing Hints (TPH) feature
- Inbound I/O DMA write data is injected into the L2 cache directly

Data flow

- Host and endpoints must both support the TPH feature
- Endpoint driver and FW chooses which DMA data for cache injection
- The driver leverages OS ACPI _DSM interface to retrieve ST.
- Vendor's IO Die decides the cache line placement policy accordingly.



PCIe Express TLP Headers

Software Stack

- 1. BIOS: TPH mapping
 - Provide SoC specific mapping information: CPU UIDs ==> ST Tags
- 2. Linux: Generic PCIe TPH support
 - TPH capability detection and configuration
 - ST table configuration and update
- 3. Driver: What is injected?
 - Parsing TPH ST mapping for device specific setup

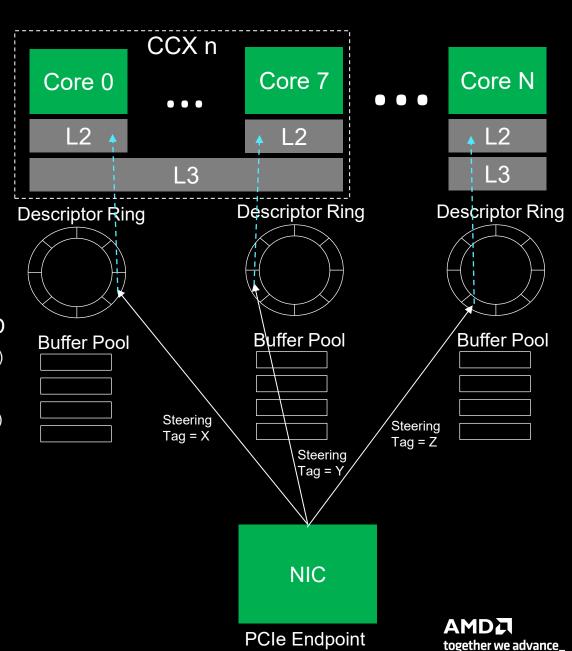
AMD

Endpoint Vendor

AMD together we advance_

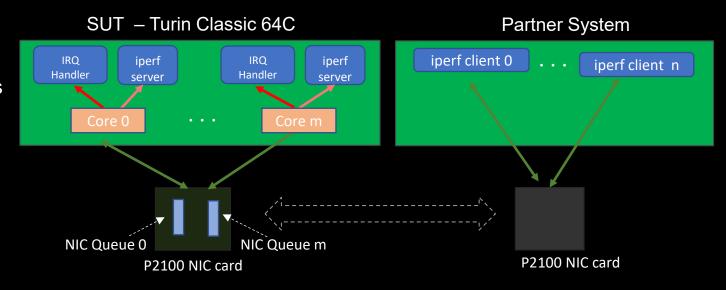
Linux TPH Core API

- 1. End-point device's TPH extended capability will be probed by Linux by default.
- 2. TPH enable and disable functions
 - o pcie enable tph() activates TPH for devices in various modes
 - o pcie disable tph() disables TPH and clears related bits
- 3. Steering tag management
 - o pcie tph get cpu st() retrieves CPU-optimized ST values via ACPI
 - o pcie tph set st entry() programs these tags into steering tables


Kernel support status

- Full SDCI Support in Linux since Kernel version 6.13
- Configuration and control support is enabled via CONFIG PCIE TPH
- TPH support can be disabled globally using the pci=notph in kernel boot parameter

Sample Driver - BNXT


TPH support enablement flow in bnxt driver:

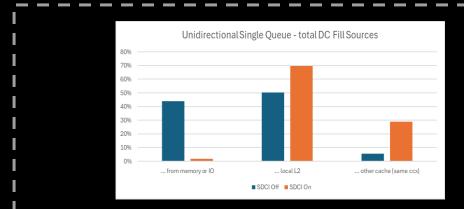
- 1. Enable per-device TPH during IRQ setup
 - o Calls pcie enable tph (PCI TPH ST IV MODE).
 - Each MSI-X vector associates a CPU mask that will drive ST selection.
- 2. Initialize STs for receive queues
 - o Queries pcie tph get cpu st() with the chosen CPU ID
 - o Writes ST into MSI-X entry via pcie_tph_set_st_entry()
- Track affinity changes via bnxt_irq_affinity_notify()
 - Reacts to user or kernel affinity updates
 - Reprograms MSI-X table and restarts the affected RX queue
- 4. Tear down
 - o bnxt_free_irq() disables TPH for the device.

Perf Study – Memory BW Saving

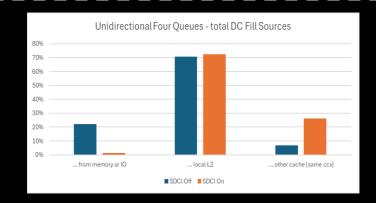
- Configuration
 - AMD Turin 64-core, DDR 5600 * 12 channels
 - Broadcom P2100 100G NICs
 - Linux kernel 6.15.2

DRAM BW	Unid	irectional 1 Q	ueue
Utilization	SDCI Off	SDCI On	% Change
UMC est read BW (GB/s)	11.54	1.68	-85%
UMC est write BW (GB/s)	10.37	3.6	-65%
Total R/W (GB/s)	21.91	5.28	-76%

1 Queue: Only Queue 0 of NIC enabled


DRAM BW Utilization1	Unidirectional 4 Queues				
	SDCI Off	SDCI On	% Change		
UMC est read BW (GB/s)	13.87	4.69	-66%		
UMC est write BW (GB/s)	12.50	6.52	-48%		
Total R/W (GB/s)	26.37	11.21	-57%		

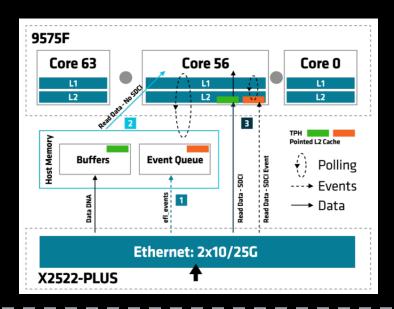
4 Queues: Queue 0-3 of NIC enabled

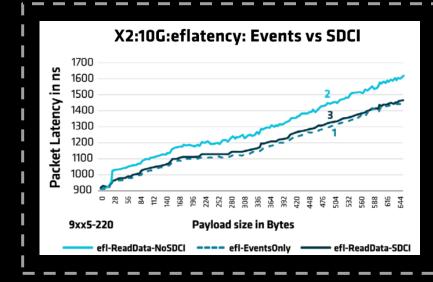


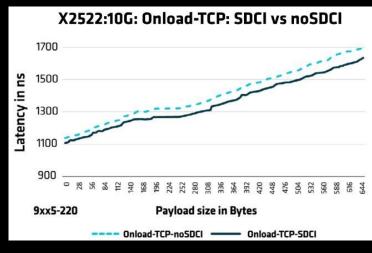
Perf Study – Memory BW Saving

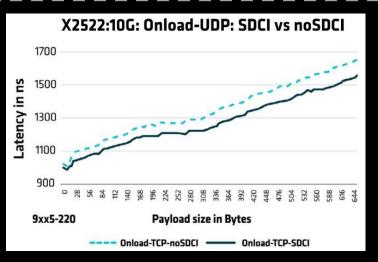
- The source of memory bandwidth saving
 - The data cache fill requests are satisfied from local caches when SDCI is turned ON.
 - A steep drop in access to local memory is seen with both the single queue and multi-queue cases.

	Unidirectional 1 Queue					
For Cores running ->	irq	iperf	Combined	irq	iperf	Combined
DC Fill %	SDCI Off		SDCI On			
from memory or IO	2%	51%	44%	1%	2%	2%
local L2	87%	44%	50%	89%	66%	70%
other cache (same ccx)	11%	5%	6%	11%	32%	29%


	Unidirectional 4 Queues					
For Cores running ->	irq	iperf	Combined	irq	iperf	Combined
DC Fill %	SDCI Off		SDCI On			
from memory or IO	2%	28%	22%	1%	1%	1%
local L2	83%	67%	71%	81%	70%	72%
other cache (same ccx)	15%	5%	7%	18%	28%	26%


1 Queue 4 Queues




Perf Study – Latency Improvement

- Configuration
 - AMD EPYC™ Turin 9575F (64C), Ubuntu 25.04, kernel 6.14
 - AMD Solarflare X2522 NIC, SMT disabled, BIOS tuned for low latency
 - Benchmarks
 - eflatency benchmark
 - OpenOnloadTM with TCP/UDP

Call for Collaboration

- Current Status
 - AMD SDCI was introduced in Zen5.
 - TPH support was in kernel 6.13 & Broadcom driver's TPH support was introduced in 6.15.
 - AMD SDCI QoS (resctrl) was enabled in 6.18.
- Work in progress
 - TPH virtualization support
- Collaboration ideas
 - Enable TPH support in other vendor platforms
 - Identify and add TPH support to more device drivers
 - Enhance driver-level heuristics for dynamic cache injection
 - Explore integration with other frameworks