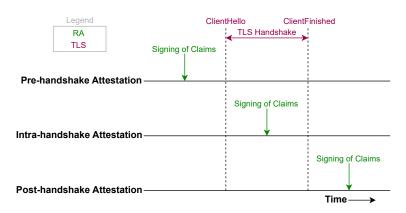
Standardization of Attested TLS Protocols

Muhammad Usama Sardar^{1,2}

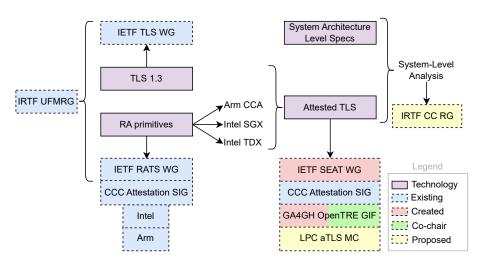
¹TU Dresden, Germany

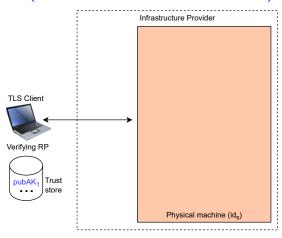
²Co-chair, Trusted Research Environment (TRE) Open Suite, Global Alliance for Genomics and Health (GA4GH)

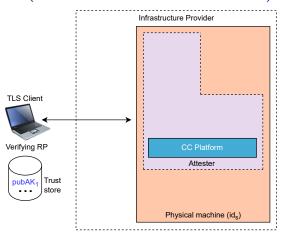

December 12, 2025

Outline

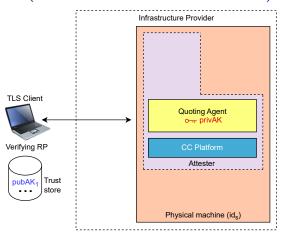
- System Model and Goals
- Results and Discussion
- Backup

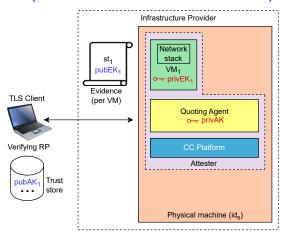

Quick Reminder from LPC'24

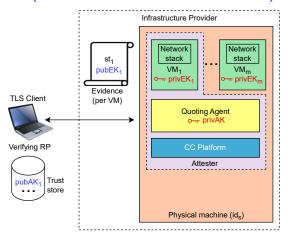

Link to LPC'24 presentation

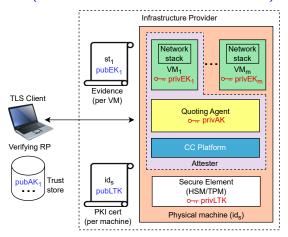

- Pre-handshake: Intel's RA-TLS/Interoperable RA-TLS (IRA-TLS)
- Intra-handshake: draft-fossati-tls-attestation (TLS-a)
- Post-handshake: draft-fossati-seat-expat

Big Picture




AK = Attestation Key

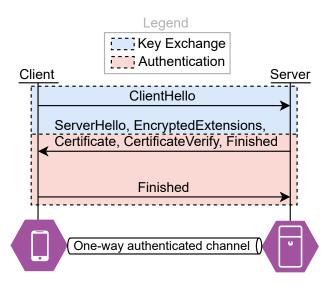

AK = Attestation Key


AK = Attestation Key

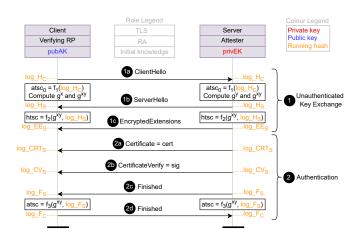
- AK = Attestation Key
- EK = Ephemeral Key

- AK = Attestation Key
- EK = Ephemeral Key

- AK = Attestation Key
- EK = Ephemeral Key
- LTK = Long-Term Key

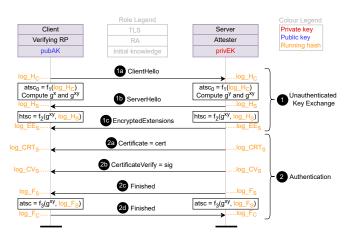

- Remote Attestation
 - G-RA1: Integrity of Evidence
 - G-RA2: Freshness of Evidence
 - Binding Evidence to a specific RA interaction
 - Recentness of Evidence generation
 - G-RA3: Establishment of connection with privAK known to adversary
 - G-RA4: Establishment of connection with privEK known to adversary

- Remote Attestation
 - G-RA1: Integrity of Evidence
 - G-RA2: Freshness of Evidence
 - Binding Evidence to a specific RA interaction
 - Recentness of Evidence generation
 - G-RA3: Establishment of connection with privAK known to adversary
 - G-RA4: Establishment of connection with privEK known to adversary
- Standard TLS properties
 - G-TLS1: Establishment of connection with client_write_key known to adversary
 - G-TLS2: Server authentication


- Remote Attestation
 - G-RA1: Integrity of Evidence
 - G-RA2: Freshness of Evidence
 - Binding Evidence to a specific RA interaction
 - Recentness of Evidence generation
 - G-RA3: Establishment of connection with privAK known to adversary
 - G-RA4: Establishment of connection with privEK known to adversary
- Standard TLS properties
 - G-TLS1: Establishment of connection with client_write_key known to adversary
 - G-TLS2: Server authentication
- Composition goals
 - G-C1: Evidence is generated by the same server that is authenticated
 - Correlating Evidence to a specific TLS connection: g^{xy} , htsc, atsc
 - G-C2: Agreement of all Remote Attestation and TLS parameters

- Remote Attestation
 - G-RA1: Integrity of Evidence
 - G-RA2: Freshness of Evidence
 - Binding Evidence to a specific RA interaction
 - Recentness of Evidence generation
 - G-RA3: Establishment of connection with privAK known to adversary
 - G-RA4: Establishment of connection with privEK known to adversary
- Standard TLS properties
 - G-TLS1: Establishment of connection with client_write_key known to adversary
 - G-TLS2: Server authentication
- Composition goals
 - G-C1: Evidence is generated by the same server that is authenticated
 - Correlating Evidence to a specific TLS connection: g^{xy} , htsc, atsc
 - G-C2: Agreement of all Remote Attestation and TLS parameters
- Discussion: Any other (verifiable) security goals?

Standard TLS 1.3


Strong Binding vs. Relay of Evidence (Abstracted)

- Discussion: Correlating Evidence to htsc vs. atsc
 - Running hash

 atsc transitively includes all contributions in htsc
 - atsc provides stronger binding and avoids relay attacks.

Strong Binding vs. Relay of Evidence (Abstracted)

- htsc: used for encryption of clientFinished message (2d).
 - Irrelevant for security goals
- atsc: used for encryption of application data (client's secret, e.g., decryption key)
 - Relevant for security goals

Outline

System Model and Goals

Results and Discussion

Backup

Results for Pre- and Intra-handshake Attestation¹

- Pre-handshake attestation: Interoperable RA-TLS (IRA-TLS)
- Intra-handshake attestation: draft-fossati-tls-attestation (TLS-a)

Security goal	IRA-TLS	TLS-a
G-RA1: Integrity of Evidence	✓	√
G-RA2: Freshness of Evidence	×	✓
G-RA3 : Protection of Attestation Keys	✓	✓
G-RA4: Protection of Ephemeral Keys	✓	✓
G-TLS1: Protection of Client's Write Key	✓	✓
G-TLS2.1 : Server Authentication	×	×
G-TLS2.2 : Server Authentication	×	×
G-C1a : Correlation of Evidence to gxy	×	×
G-C1b : Correlation of Evidence to htsc	×	×
G-C1c : Correlation of Evidence to atsc	×	×
G-C2: Agreement of all parameters	×	×

 $[\]checkmark$ = satisfied; \times = not satisfied.

Details in https://datatracker.ietf.org/doc/slides-124-ufmrg-formal-analysis-of-attested-tls-protocols

Results for Proposed Solutions in Intra-handshake Attestation

- Sol.1: Modify CertificateVerify message
- Sol.2: Two CertificateVerify messages
- Sol.3: New signature algorithm
- Sol.4: New Attestation message
- Sol.5: Modify CertificateVerify message + define new exporter

Security goal	Sol.1	Sol.2	Sol.3	Sol.4	Sol.5
G-RA1: Integrity of Evidence	✓	✓	✓	✓	✓
G-RA2: Freshness of Evidence	✓	✓	\checkmark	✓	✓
G-RA3: Protection of Attestation Keys	✓	✓	\checkmark	✓	✓
G-RA4: Protection of Ephemeral Keys	✓	✓	\checkmark	✓	✓
G-TLS1: Protection of Client's Write Key	✓	✓	✓	✓	✓
G-TLS2.1: Server Authentication	✓	✓	✓	✓	✓
G-TLS2.2: Server Authentication	✓	✓	\checkmark	✓	✓
G-C1a: Correlation of Evidence to gxy	×	×	×	×	✓
G-C1b : Correlation of Evidence to htsc	×	×	×	×	✓
G-C1c : Correlation of Evidence to atsc	×	×	×	×	×
G-C2: Agreement of all parameters	✓	✓	✓	✓	✓

• Pre- and intra-handshake attestation (draft-fossati-tls-attestation) are not suitable choices for standardization.

- Pre- and intra-handshake attestation (draft-fossati-tls-attestation) are not suitable choices for standardization.
- Key insights from formal analysis
 - Need infrastructure identity to prevent diversion attacks
 - Need cryptographic binding of RA and TLS to prevent relay attacks
 - Need VM identity to prevent replication attacks
 - One of the most challenging protocols of the IETF: formal analysis is critical to the success.

- Pre- and intra-handshake attestation (draft-fossati-tls-attestation) are not suitable choices for standardization.
- Key insights from formal analysis
 - Need infrastructure identity to prevent diversion attacks
 - Need cryptographic binding of RA and TLS to prevent relay attacks
 - Need VM identity to prevent replication attacks
 - One of the most challenging protocols of the IETF: formal analysis is critical to the success.
- Part of formal analysis accepted at AsiaCCS
- WiP: post-handshake attestation, i.e., draft-fossati-seat-expat
 - Formal analysis in ProVerif
 - Implementation in Rustls (Peg Jones)
 - Implementation in BoringSSL (Pavel Nikonorov)
- Questions for discussion:
 - Any other (verifiable) security goals?
 - htsc vs. atsc?
 - Any other solution?

- Pre- and intra-handshake attestation (draft-fossati-tls-attestation) are not suitable choices for standardization.
- Key insights from formal analysis
 - Need infrastructure identity to prevent diversion attacks
 - Need cryptographic binding of RA and TLS to prevent relay attacks
 - Need VM identity to prevent replication attacks
 - One of the most challenging protocols of the IETF: formal analysis is critical to the success.
- Part of formal analysis accepted at AsiaCCS
- WiP: post-handshake attestation, i.e., draft-fossati-seat-expat
 - Formal analysis in ProVerif
 - Implementation in Rustls (Peg Jones)
 - Implementation in BoringSSL (Pavel Nikonorov)
- Questions for discussion:
 - Any other (verifiable) security goals?
 - htsc vs. atsc?
 - Any other solution?
- BoF today at 15:45 https://lpc.events/event/19/contributions/2299/

Links to Resources

- Wiki page
- Formal proof of insecurity of pre- and intra-handshake attestation
- Post-handshake attestation draft
- Attestation in Arm CCA and Intel TDX
- Security considerations of remote attestation
- IETF SEAT WG
- Technical Concepts
- Validation of TLS 1.3 Key Schedule
- General Approach
- Weekly meetings

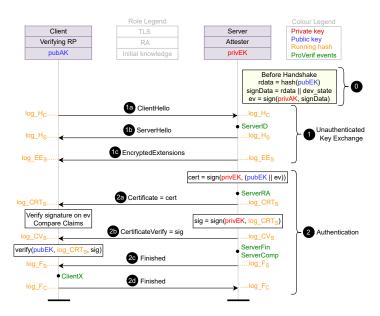
Co-authors

- Jean-Marie Jacquet (University of Namur)
- Ionut Mihalcea (Arm)
- Thomas Fossati (Linaro)
- Arto Niemi (Huawei)
- Hannes Tschofenig (University of Applied Sciences Bonn-Rhein-Sieg and Siemens)
- Simon Frost (Arm)
- Ned Smith (Intel)
- Carsten Weinhold (Barkhausen Institut)
- Michael Roitzsch (Barkhausen Institut)
- Yogesh Deshpande (Arm)
- Yaron Sheffer (Intuit)
- Tirumaleswar Reddy K. (Nokia)
- Henk Birkholz (Fraunhofer SIT)
- Mariam Moustafa (Aalto University)
- Tuomas Aura (Aalto University)
- Liang Xia (Huawei)
- Weiyu Jiang (Huawei)
- Jun Zhang (Huawei)
- Houda Labiod (Huawei)
- Yuning Jiang (Huawei Partners)
- Meiling Chen (China Mobile)
- Peter Chunchi Liu (Huawei)

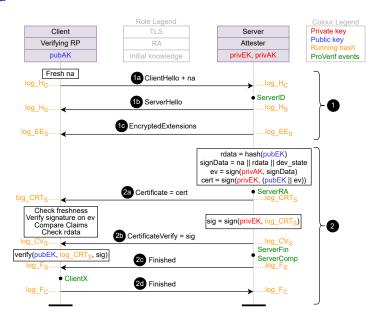
Contributors

- Eric Rescorla (Independent)
- Laurence Lundblade (Security Theory LLC)
- Göran Selander (Ericsson AB)
- Marco Tiloca (RISE AB)
- Richard Barnes (Cloudflare)
- Giridhar Mandyam (AMD)
- Christopher Patton (Cloudflare)
- Pavel Nikonorov (GENXT)
- Dionna Amalie Glaze (Google)
- Bob Beck (Google)
- Mike Ounsworth (Cryptic Forest Software)
- John Preuß Mattsson (Ericsson Research)
 - Cedric Fournet (Microsoft)
 - Thore Sommer (TU Munich)
 - Nikolaus Thümmel (Scontain)
- Jonathan Hoyland (Cloudflare)
- Jo Van Bulck (KU Leuven)
- Martin Thomson (Mozilla)
- Britta Hale (Naval Postgraduate School)
- Werner Staub (CORE Association)
- Paul Wouters (Aiven)
- Dennis Jackson (Mozilla)
- Peg Jones (Flashbots)

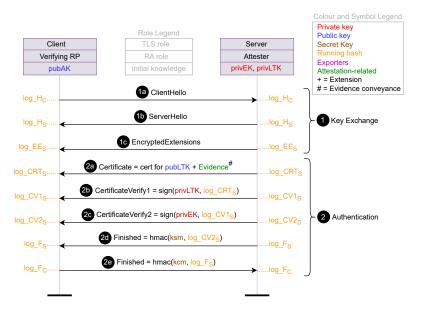
19 / 28

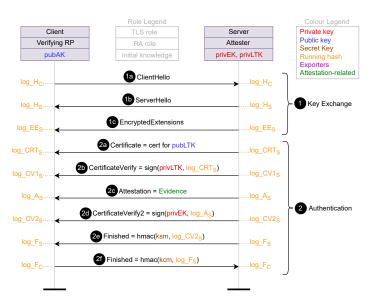

Outline

System Model and Goals


Results and Discussion

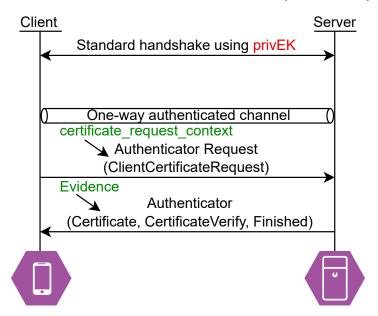
Backup


IRA-TLS

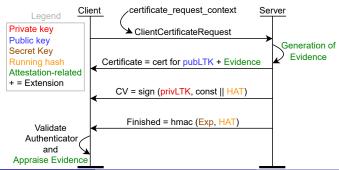

TLS-a

Sol. 2: Two CertificateVerify Messages

Sol. 4: New Attestation Message


Sol. 5: Cryptographic Binding

Sol. 5 (cont.): Cryptographic Binding



Proposal for Post-handshake Attestation (RFC 9261)

Post-handshake Flow

- 1. Authenticator Request
 - Unique certificate_request_context within connection
- 2. Evidence based on this context and Exported Keying Material (EKM)
- 3. Authenticator
 - Certificate message extended with Evidence
 - CertificateVerify as in RFC 9261
 - Finished as in RFC 9261
- 4. Validation: additionally appraise Evidence

