
guest_memfd HugeTLB 
overview

For 2026-02-23 Hypervisor Live Update call

Contact ackerleytng@google.com if you have questions/suggestions!

mailto:ackerleytng@google.com


● guest_memfd is a guest-first memory provider that is KVM-specific
● Like the usual tmpfs or HugeTLBfs

○ Has an fd
○ Can be mmap()-ed

● In addition to those, it has tracking of memory attributes: shared vs private (in 
the CoCo sense)

○ Private memory cannot be mapped to userspace
■ mmap() is okay but access (faulting) will result in a SIGBUS

Introduction to guest_memfd



● guest_memfd wraps existing sources of memory
○ Uses the buddy allocator for PAGE_SIZE pages
○ Gets pages from HugeTLB to provide huge pages

● Put those folios in a filemap (like HugeTLBfs or tmpfs)

Actually providing memory



● Every page is individually tracked to be either shared or private
● Confidential guests can request a private page to be shared with the host 

(aka private to shared conversions), or the reverse

Memory attribute tracking and “conversions”



1. Guest requests conversions with a hypercall
2. KVM exits to userspace
3. Userspace VMM makes sure that devices stop using the memory requested 

to be converted
4. Userspace sends the SET_MEMORY_ATTRIBUTES to guest_memfd
5. guest_memfd unmaps requested range from userspace page tables
6. guest_memfd records the page to be private
7. Userspace does a KVM_RUN

Conversion flow: shared to private



1. Guest requests conversions with a hypercall
2. KVM exits to userspace
3. Userspace VMM makes sure that devices stop using the memory requested 

to be converted
4. Userspace sends the SET_MEMORY_ATTRIBUTES to guest_memfd
5. guest_memfd unmaps requested range from userspace page tables
6. guest_memfd records the page to be private
7. Userspace does a KVM_RUN

Conversion flow: shared to private



● No users is defined as refcount == guest_memfd’s refcount
● Enable per-page refcounting by splitting pages

○ So that a refcount on the last page can be distinguished from a refcount on the first page

Kernel makes sure that there are no users



● Split folios have to be merged before returning them to HugeTLB
● Split folios may outlive guest_memfd, may even outlive KVM

○ fd might be closed before the memory is unpinned
● Hence there is more folio metadata tracked outside of KVM, e.g.

○ What was the original size of this folio before splitting?
○ What was this folio’s memcg?

● Memory failure handling also uses this folio metadata to identify guest_memfd 
HugeTLB folios 

○ Traditional memory failure handling may race with restructuring during conversions

Folio restructuring



● For guest_memfd (PAGE_SIZE folios)
○ Filemap and associated folios
○ Memory attributes (maple tree)

● For guest_memfd HugeTLB
○ Restructuring metadata
○ (What happens if some memory failure happens during KHO?)

Summary of stuff to be persisted during KHO



● Conversion support (also introduces private/shared tracking)
○ 1 outstanding uAPI issue (memory content preservation during conversions)
○ Hope to merge ~March 2026

● HugeTLB support without restructuring
○ Some remaining implementation details to figure out
○ Hope to merge ~June 2026

● HugeTLB support with restructuring
○ Hopefully September 2026?

● Implement kexec persistence in the same order?

Timelines/estimates


