guest memfd Huge TLB
overview

For 2026-02-23 Hypervisor Live Update call

Contact ackerleytng@google.com if you have questions/suggestions!

mailto:ackerleytng@google.com

Introduction to guest._ memfd

e guest memfd is a guest-first memory provider that is KVM-specific
e Like the usual tmpfs or HugeTLBfs

o Hasanfd
o Can be mmap()-ed

e In addition to those, it has tracking of memory attributes: shared vs private (in

the CoCo sense)

o Private memory cannot be mapped to userspace
m mmap() is okay but access (faulting) will result in a SIGBUS

Actually providing memory

e guest memfd wraps existing sources of memory
o Uses the buddy allocator for PAGE_SIZE pages
o Gets pages from HugeTLB to provide huge pages

e Put those folios in a filemap (like Huge TLBfs or tmpfs)

Memory attribute tracking and “conversions”

e Every page is individually tracked to be either shared or private
e Confidential guests can request a private page to be shared with the host
(aka private to shared conversions), or the reverse

Conversion flow: shared to private

1. Guest requests conversions with a hypercall

2. KVM exits to userspace

3. Userspace VMM makes sure that devices stop using the memory requested
to be converted

4. Userspace sends the SET_MEMORY_ATTRIBUTES to guest memfd

5. guest_memfd unmaps requested range from userspace page tables

6. guest memfd records the page to be private

7. Userspace does a KVM_RUN

Conversion flow: shared to private

1. Guest requests conversions with a hypercall

2. KVM exits to userspace

3. Userspace VMM makes sure that devices stop using the memory requested
to be converted

4. Userspace sends the SET_MEMORY_ATTRIBUTES to guest memfd

5. guest_memfd unmaps requested range from userspace page tables

6. guest memfd records the page to be private

7. Userspace does a KVM_RUN

Kernel makes sure that there are no users

e No users is defined as refcount == guest_memfd’s refcount
e Enable per-page refcounting by splitting pages

o So that a refcount on the last page can be distinguished from a refcount on the first page

Folio restructuring

e Split folios have to be merged before returning them to HugeTLB
e Split folios may outlive guest memfd, may even outlive KVM
o fd might be closed before the memory is unpinned

e Hence there is more folio metadata tracked outside of KVM, e.g.

o What was the original size of this folio before splitting?
o What was this folio’s memcg?

e Memory failure handling also uses this folio metadata to identify guest_ memfd
HugeTLB folios

o Traditional memory failure handling may race with restructuring during conversions

Summary of stuff to be persisted during KHO

e For guest memfd (PAGE_SIZE folios)

o Filemap and associated folios
o Memory attributes (maple tree)
e Forguest memfd HugeTLB

o Restructuring metadata
o (What happens if some memory failure happens during KHO?)

Timelines/estimates

e Conversion support (also introduces private/shared tracking)
o 1 outstanding uAPI issue (memory content preservation during conversions)
o Hope to merge ~March 2026
e HugeTLB support without restructuring
o Some remaining implementation details to figure out
o Hope to merge ~June 2026
e HugeTLB support with restructuring
o Hopefully September 20267

e Implement kexec persistence in the same order?

