
Linux Plumbers Conference 2025

Contribution ID: 332 Type: not specified

External locking for internally synchronized data
structures

Some C kernel data structures exposed to Rust code apply internal
synchronization (XArray). Depending on the type of lock, such data structures
need to unlock locks when allocating memory. Sometimes it is beneficial to use a
single external lock to protect multiple such data structures.

In Rust this creates a problem that is not present in C. This is because that
mutably borrowing through a lock guard takes out a mutable borrow on the lock
guard, thus making the guard unavailable, and thus the lock cannot be released
momentarily while allocating memory.

In Kangrejos (the Rust for Linux annual workshop), we presented a Rust API that
allows the use of an external lock while still allowing the data structure to
momentarily drop locks for the purpose of allocating memory.

In this session we address concerns that were raised at Kangrejos; how we handle
races that can occur while the lock is dropped for memory allocation purposes,
and the effect of the locking pattern on data structures applying the Entry
pattern. We also aim to present benchmark results collected from real kernel
code, rather than user space toy examples.

We aim to use the session to collect input from the community to iron out any
potential pain points of the external locking API. We hope that the session will
spark discussion and awareness in the community, such that the basic shape of
the API is widely accepted when patches hit the list.

Primary author: Mr HINDBORG, Andreas (Samsung)

Presenter: Mr HINDBORG, Andreas (Samsung)

Session Classification: Rust MC

Track Classification: Rust MC


