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• Containers are a flexible and lightweight virtualization technique to provide isolation among processes

> Flexible: can decide the level of isolation

> Lightweight: hardware and kernel shared among containers

• Containers are built upon Linux namespaces

> Namespaces provide to processes independent instances of the same kernel resource (e.g. mount table)

> Each process is associated with a set of namespaces and it has access to the resources of those namespaces

> A process can migrate to new/existing namespaces through system calls

> 8 upstreamed namespaces: user, network, IPC, PID, cgroup, mount, time, UTS

• A container is a set of different namespaces aggregated by userspace (e.g. LXC, Docker, Podman)

Background - Containers



Huawei Proprietary - Restricted Distribution4

• The kernel is not aware of containers

> The kernel cannot identifies containers (as resources belonging to them)

• Containers’ isolation is in place only if the container runtime (e.g. Docker) configures everything correctly

> This cannot be assumed as true with container runtime being a userspace process (outside the TCB)

• The growing adoption of containers has brought interest in allowing integrity verification features per-

container

> Being able to enforce and verify that a container behaves as desired

Background – Container Runtime
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• For integrity verification purposes, Linux provides the Integrity Measurement Architecture (IMA) LSM

> IMA is policy based and provides three main features:

- IMA-measurement: it measures events for providing evidences of what happened on the host

- IMA-appraisal: it enforces file integrity

- IMA-audit: it augments the system audit log with file hashes

Background - IMA
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• Verifying the container 

integrity as a whole

> Processes belonging to a 

container

> Files belonging to a 

container

Problem Statement
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• … but containers are 

configured by userspace

• Kernel cannot detect this 

misconfiguration

• Kernel would have to 

verify the container 

runtime integrity too

• Hard: IMA can only give 

load-time integrity 

guaranties (runtime 

attacks cannot be fully 

detected)

Problem Statement

IPC ns 1
PID ns 1

cgroup

ns 1

Net ns 1

mount 

ns 1

UTS ns 

1

user ns 

1

IPC ns 2
PID ns 2

cgroup

ns 2

Net ns 2

mount 

ns 2

UTS ns 

2

user ns 

2

Kernel

Container runtime
Container 1:

- IPC ns 1

- mount ns 2

- UTS ns 2

- …

Container 2:

- IPC ns 2

- mount ns 2

- UTS ns 1

- …

Files 

Net interfaces

Application
.

.

.

Files

Net interfaces

Application
.

.

.

Files



Huawei Proprietary - Restricted Distribution8

• Not being able to use the container resources association, for integrity verification, we have to define a 

new one

• This new association must be maintained by the kernel

• This association aggregates processes for which the integrity is verified assuming there is not any other 

isolation in place

• This association is a new namespace: the IMA namespace

• IMA namespace != userspace container

Possible Solution: IMA Namespace
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• v1: First proposed as a standalone namespace

> Created only when a mount namespace is created

• v2: Piggy backed into the mount namespace

> NACK-ed

• v3: Piggy backed into the user namespace

> Created along CLONE_NEWUSER

• v4: Standalone namespace

> Created on clone() after write on securityfs

• V5: moved back into user namespace

> Created after securityfs mount

IMA namespace: a bit of history
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• Define integrity principles IMA must follow when dealing with containers

• Evaluate proposed solutions

• Propose improvements

Contribution
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• Per-IMA namespace measurements list

• IMA namespace as a processes’ (sub)set

> File don’t belong to IMA namespaces and can be shared among namespaces

• An IMA namespace is not aware of children IMA namespaces

> A process cannot escape its current IMA namespace

• The kernel is common for all IMA namespaces

> For example kernel modules loading affects all IMA namespaces

• An IMA namespace cannot miss integrity events related to its associated processes

> No gap between IMA namespace creation and activation (events in-between would be missed)

> Join performed during execve() just before the main executable is loaded in the process memory

Principles defined
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• Per-IMA namespace measurements list

• IMA namespace as a processes’ (sub)set

> File don’t belong to IMA namespaces and can be shared among namespaces

• An IMA namespace is not aware of children IMA namespaces

> A process cannot escape its current IMA namespace

• The kernel is common for all IMA namespaces

> For example kernel modules loading affects all IMA namespaces

• An IMA namespace cannot miss integrity events related to its associated processes

> No gap between IMA namespace creation and activation (events in-between would be missed)

> Join performed during execve() just before the main executable is loaded in the process memory

Principles defined
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• Per-IMA namespace measurements list

• IMA namespace as a processes’ (sub)set

> File don’t belong to IMA namespaces and can be shared among namespaces

• An IMA namespace is not aware of children IMA namespaces

> A process cannot escape its current IMA namespace

• The kernel is common for all IMA namespaces

> For example kernel modules loading affects all IMA namespaces

• An IMA namespace cannot miss integrity events related to its associated processes

> No gap between IMA namespace creation and activation (events in-between would be missed)

> Join performed during execve() just before the main executable is loaded in the process memory

Principles defined
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Measurements still happen in the parent IMA namespace
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• Per-IMA namespace measurements list

• IMA namespace as a processes’ (sub)set

> File don’t belong to IMA namespaces and can be shared among namespaces

• An IMA namespace is not aware of children IMA namespaces

> A process cannot escape its current IMA namespace

• The kernel is common for all IMA namespaces

> For example kernel modules loading affects all IMA namespaces

• An IMA namespace cannot miss integrity events related to its associated processes

> No gap between IMA namespace creation and activation (events in-between would be missed)

> Join performed during execve() just before the main executable is loaded in the process memory

Principles defined
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• Per-IMA namespace measurements list

• IMA namespace as a processes’ (sub)set

> File don’t belong to IMA namespaces and can be shared among namespaces

• An IMA namespace is not aware of children IMA namespaces

> A process cannot escape its current IMA namespace

• The kernel is common for all IMA namespaces

> For example kernel modules loading affects all IMA namespaces

• An IMA namespace cannot miss integrity events related to its associated processes

> No gap between IMA namespace creation and activation (events in-between would be missed)

> Join performed during execve() just before the main executable is loaded in the process memory

Principles defined
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• clone3() and unshare() don’t allow atomic creation and configuration

> Namespace’s configuration parameters cannot be passed to those system calls

> Stefan’s proposal is to join an (inactive) IMA namespace, configure and activate it later (not atomically)

> Issue: the new IMA namespace misses process’ events until it is activated

• Don’t allow creation with direct call to clone3() or unshare()

> clone3() already disabled (CLONE_NEWIMA overlaps with CSIGNAL)

> unshare() has to be explicitly denied

• Introduce a new atomic procedure to create and configure the IMA namespace

> Introduce a new “unshare” file in the securityfs which receives (through a write operation) the configuration and 

triggers the new IMA namespace creation

> Forbid joining it until creation and configuration are complete

No gap between IMA namespace creation and activation
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• Stefan’s proposal allows a process, with executable code already loaded, to join a new or existing IMA 

namespace

> Issue: target IMA namespace will contain a process with unknown integrity status (loaded code not measured)

• Only chance, to start from a clean integrity state from the IMA perspective, is during execve()

> It is the only time when joining a new IMA namespace is allowed

> This guarantees that the new IMA namespace can evaluate the loading of the main executable

• Since a process cannot join until execve(), the new IMA namespace is temporary referenced by a new 

nsproxy field called ima_ns_for_children

> Deferred joining approach is also adopted by PID and time namespace

> Only time namespace is joined during execve() (later than IMA BPRM_CHECK hook)

Join performed during execve()
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Join performed during execve() (2)

task 1

ima_ns

ima_ns_for_children

-> [000001]

-> [000001]

𝑃1

ima_ns_1



Huawei Proprietary - Restricted Distribution33

Join performed during execve() (2)
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Join performed during execve() (2)
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Join performed during execve() (2)
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Join performed during execve() (2)
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• Protect each IMA namespace measurements list with a RoT

• Ensure the IMA namespace has been configured accordingly to user requirements

• Ensure correct binding between IMA namespace and user application

• Which user namespace is used for IMA namespace policy evaluation (owner?)

• Performance impact (e.g. memory consumption)

• Per-IMA namespace metadata

> Locking

Open Problems
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• IMA namespace is promising for upstream

> Already reviewed by maintainers 

• Stefan’s proposal very close to our requirements

> Issue: a clear design is missing

> We addressed this design gap

• Let’s discuss about our design changes and implementation

Conclusion
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