
Security Level: External

Department name: Dresden Research Center (DRC)

Author’s name: Enrico Bravi, Roberto Sassu

Date: 19/09/2024

IMA namespace best for container integrity?



Contents

1. Background

2. Problem Statement

3. Contribution

4. Open Problems & Conclusion



Huawei Proprietary - Restricted Distribution3

• Containers are a flexible and lightweight virtualization technique to provide isolation among processes

> Flexible: can decide the level of isolation

> Lightweight: hardware and kernel shared among containers

• Containers are built upon Linux namespaces

> Namespaces provide to processes independent instances of the same kernel resource (e.g. mount table)

> Each process is associated with a set of namespaces and it has access to the resources of those namespaces

> A process can migrate to new/existing namespaces through system calls

> 8 upstreamed namespaces: user, network, IPC, PID, cgroup, mount, time, UTS

• A container is a set of different namespaces aggregated by userspace (e.g. LXC, Docker, Podman)

Background - Containers



Huawei Proprietary - Restricted Distribution4

• The kernel is not aware of containers

> The kernel cannot identifies containers (as resources belonging to them)

• Containers’ isolation is in place only if the container runtime (e.g. Docker) configures everything correctly

> This cannot be assumed as true with container runtime being a userspace process (outside the TCB)

• The growing adoption of containers has brought interest in allowing integrity verification features per-

container

> Being able to enforce and verify that a container behaves as desired

Background – Container Runtime



Huawei Proprietary - Restricted Distribution5

• For integrity verification purposes, Linux provides the Integrity Measurement Architecture (IMA) LSM

> IMA is policy based and provides three main features:

- IMA-measurement: it measures events for providing evidences of what happened on the host

- IMA-appraisal: it enforces file integrity

- IMA-audit: it augments the system audit log with file hashes

Background - IMA

…
open()
…

process

IMA

measurement

…

…

10 af0…3e5 sha1:f45…dd3 /path/to/file

IMA measurements list

Measure

open()-ed file

Store 

measurement
…
open()
…

process

IMA

appraisal

Collect file

signature

Signature 

verification OK?

Allow access

yes

no

Deny access



Huawei Proprietary - Restricted Distribution6

• Verifying the container 

integrity as a whole

> Processes belonging to a 

container

> Files belonging to a 

container

Problem Statement

IPC ns 1
PID ns 1

cgroup

ns 1

Net ns 1

mount 

ns 1

UTS ns 

1

user ns 

1

IPC ns 2
PID ns 2

cgroup

ns 2

Net ns 2

mount 

ns 2

UTS ns 

2

user ns 

2

Kernel

Container runtime
Container 1:

- IPC ns 1

- mount ns 1

- UTS ns 2

- …

Container 2:

- IPC ns 2

- mount ns 2

- UTS ns 1

- …

Files 

Net interfaces

Application
.

.

.

Files

Net interfaces

Application
.

.

.



Huawei Proprietary - Restricted Distribution7

• … but containers are 

configured by userspace

• Kernel cannot detect this 

misconfiguration

• Kernel would have to 

verify the container 

runtime integrity too

• Hard: IMA can only give 

load-time integrity 

guaranties (runtime 

attacks cannot be fully 

detected)

Problem Statement

IPC ns 1
PID ns 1

cgroup

ns 1

Net ns 1

mount 

ns 1

UTS ns 

1

user ns 

1

IPC ns 2
PID ns 2

cgroup

ns 2

Net ns 2

mount 

ns 2

UTS ns 

2

user ns 

2

Kernel

Container runtime
Container 1:

- IPC ns 1

- mount ns 2

- UTS ns 2

- …

Container 2:

- IPC ns 2

- mount ns 2

- UTS ns 1

- …

Files 

Net interfaces

Application
.

.

.

Files

Net interfaces

Application
.

.

.

Files



Huawei Proprietary - Restricted Distribution8

• Not being able to use the container resources association, for integrity verification, we have to define a 

new one

• This new association must be maintained by the kernel

• This association aggregates processes for which the integrity is verified assuming there is not any other 

isolation in place

• This association is a new namespace: the IMA namespace

• IMA namespace != userspace container

Possible Solution: IMA Namespace



Huawei Proprietary - Restricted Distribution9

• v1: First proposed as a standalone namespace

> Created only when a mount namespace is created

• v2: Piggy backed into the mount namespace

> NACK-ed

• v3: Piggy backed into the user namespace

> Created along CLONE_NEWUSER

• v4: Standalone namespace

> Created on clone() after write on securityfs

• V5: moved back into user namespace

> Created after securityfs mount

IMA namespace: a bit of history



Huawei Proprietary - Restricted Distribution10

• Define integrity principles IMA must follow when dealing with containers

• Evaluate proposed solutions

• Propose improvements

Contribution



Huawei Proprietary - Restricted Distribution11

• Per-IMA namespace measurements list

• IMA namespace as a processes’ (sub)set

> File don’t belong to IMA namespaces and can be shared among namespaces

• An IMA namespace is not aware of children IMA namespaces

> A process cannot escape its current IMA namespace

• The kernel is common for all IMA namespaces

> For example kernel modules loading affects all IMA namespaces

• An IMA namespace cannot miss integrity events related to its associated processes

> No gap between IMA namespace creation and activation (events in-between would be missed)

> Join performed during execve() just before the main executable is loaded in the process memory

Principles defined



Huawei Proprietary - Restricted Distribution12

Host (init_ima_ns)

𝑃1

𝑃2

System’s objects (e.g. files)

File 1 File 2 File 3 File 5

fork()

File 4

Host IMA measurements list



Huawei Proprietary - Restricted Distribution13

Host (init_ima_ns)

ima_ns 1

𝑃3

𝑃1

𝑃2

System’s objects (e.g. files)

File 1 File 2 File 3 File 5

fork()

File 4

Host IMA measurements list

ima_ns 1 measurements list



Huawei Proprietary - Restricted Distribution14

Host (init_ima_ns)

ima_ns 1

𝑃3

𝑃5 𝑃6

𝑃1

𝑃4
𝑃2

System’s objects (e.g. files)

File 1 File 2 File 3 File 5

fork()

File 4

Host IMA measurements list

ima_ns 1 measurements list



Huawei Proprietary - Restricted Distribution15

Host (init_ima_ns)

ima_ns 1

𝑃3

𝑃5 𝑃6

𝑃1

𝑃4

𝑃7

𝑃2

ima_ns 2

System’s objects (e.g. files)

File 1 File 2 File 3 File 5

fork()

ima_ns 2 measurements list

File 4

Host IMA measurements list

ima_ns 1 measurements list



Huawei Proprietary - Restricted Distribution16

Host (init_ima_ns)

ima_ns 1 ima_ns 3

𝑃3

𝑃5 𝑃6 𝑃8

𝑃1

𝑃4

𝑃7

𝑃2

ima_ns 2

System’s objects (e.g. files)

File 1 File 2 File 3 File 5

fork()

ima_ns 2 measurements list

ima_ns 3 measurements list

File 4

Host IMA measurements list

ima_ns 1 measurements list



Huawei Proprietary - Restricted Distribution17

• Per-IMA namespace measurements list

• IMA namespace as a processes’ (sub)set

> File don’t belong to IMA namespaces and can be shared among namespaces

• An IMA namespace is not aware of children IMA namespaces

> A process cannot escape its current IMA namespace

• The kernel is common for all IMA namespaces

> For example kernel modules loading affects all IMA namespaces

• An IMA namespace cannot miss integrity events related to its associated processes

> No gap between IMA namespace creation and activation (events in-between would be missed)

> Join performed during execve() just before the main executable is loaded in the process memory

Principles defined



Huawei Proprietary - Restricted Distribution18

Host (init_ima_ns)

ima_ns 1 ima_ns 3

𝑃3

𝑃5 𝑃6 𝑃8

𝑃1

𝑃4

𝑃7

𝑃2

ima_ns 2

System’s objects (e.g. files)

File 1 File 2 File 3 File 5

fork()

ima_ns 2 measurements list

ima_ns 3 measurements list

File 4

Host IMA measurements list

ima_ns 1 measurements list



Huawei Proprietary - Restricted Distribution19

Host (init_ima_ns)

ima_ns 1 ima_ns 3

𝑃3

𝑃5 𝑃6 𝑃8

𝑃1

𝑃4

𝑃7

𝑃2

ima_ns 2

System’s objects (e.g. files)

File 1 File 2 File 3 File 5

fork()

execve()

ima_ns 2 measurements list

10 10b…77a sha1:db4…003 File1

ima_ns 3 measurements list

File 4

Host IMA measurements list

ima_ns 1 measurements list



Huawei Proprietary - Restricted Distribution20

Host (init_ima_ns)

ima_ns 1 ima_ns 3

𝑃3

𝑃5 𝑃6 𝑃8

𝑃1

𝑃4

𝑃7

𝑃2

ima_ns 2

System’s objects (e.g. files)

File 1 File 2 File 3 File 5

fork()

execve()

open()
ima_ns 2 measurements list

10 10b…77a sha1:db4…003 File1

ima_ns 3 measurements list

10 09b…98a sha1:ee3…55e File3
File 4

Host IMA measurements list

ima_ns 1 measurements list



Huawei Proprietary - Restricted Distribution21

• Per-IMA namespace measurements list

• IMA namespace as a processes’ (sub)set

> File don’t belong to IMA namespaces and can be shared among namespaces

• An IMA namespace is not aware of children IMA namespaces

> A process cannot escape its current IMA namespace

• The kernel is common for all IMA namespaces

> For example kernel modules loading affects all IMA namespaces

• An IMA namespace cannot miss integrity events related to its associated processes

> No gap between IMA namespace creation and activation (events in-between would be missed)

> Join performed during execve() just before the main executable is loaded in the process memory

Principles defined



Huawei Proprietary - Restricted Distribution22

Host (init_ima_ns)

ima_ns 1 ima_ns 3

𝑃3

𝑃5 𝑃6 𝑃8

𝑃1

𝑃4

𝑃7

𝑃2

ima_ns 2

System’s objects (e.g. files)

File 1 File 2 File 3 File 5

fork()

execve()

open()
ima_ns 2 measurements list

10 10b…77a sha1:db4…003 File1

ima_ns 3 measurements list

10 09b…98a sha1:ee3…55e File3
File 4

Host IMA measurements list

ima_ns 1 measurements list

Measurements still happen in the parent IMA namespace



Huawei Proprietary - Restricted Distribution23

Host (init_ima_ns)

ima_ns 1 ima_ns 3

𝑃3

𝑃5 𝑃6 𝑃8

𝑃1

𝑃4

𝑃7

𝑃2

System’s objects (e.g. files)

File 1 File 2 File 3 File 5

fork()

execve()

open()
ima_ns 2 measurements list

10 10b…77a sha1:db4…003 File1

ima_ns 3 measurements list

10 09b…98a sha1:ee3…55e File3
File 4

Host IMA measurements list

ima_ns 1 measurements list

10 10b…77a sha1:db4…003 File1

Measurements still happens in the parent IMA namespace



Huawei Proprietary - Restricted Distribution24

Host (init_ima_ns)

ima_ns 3

𝑃3

𝑃5 𝑃6 𝑃8

𝑃1

𝑃4

𝑃7

𝑃2

System’s objects (e.g. files)

File 1 File 2 File 3 File 5

fork()

execve()

open()
ima_ns 2 measurements list

10 10b…77a sha1:db4…003 File1

ima_ns 3 measurements list

10 09b…98a sha1:ee3…55e File3
File 4

Host IMA measurements list

ima_ns 1 measurements list

10 10b…77a sha1:db4…003 File1

10 10b…77a sha1:db4…003 File1

Measurements still happens in the parent IMA namespace



Huawei Proprietary - Restricted Distribution25

Host (init_ima_ns)

𝑃3

𝑃5 𝑃6 𝑃8

𝑃1

𝑃4

𝑃7

𝑃2

System’s objects (e.g. files)

File 1 File 2 File 3 File 5

fork()

execve()

open()
ima_ns 2 measurements list

10 10b…77a sha1:db4…003 File1

ima_ns 3 measurements list

10 09b…98a sha1:ee3…55e File3
File 4

Host IMA measurements list

ima_ns 1 measurements list

10 10b…77a sha1:db4…003 File1

10 10b…77a sha1:db4…003 File1

10 09b…98a sha1:ee3…55e File3

Measurements still happens in the parent IMA namespace



Huawei Proprietary - Restricted Distribution26

• Per-IMA namespace measurements list

• IMA namespace as a processes’ (sub)set

> File don’t belong to IMA namespaces and can be shared among namespaces

• An IMA namespace is not aware of children IMA namespaces

> A process cannot escape its current IMA namespace

• The kernel is common for all IMA namespaces

> For example kernel modules loading affects all IMA namespaces

• An IMA namespace cannot miss integrity events related to its associated processes

> No gap between IMA namespace creation and activation (events in-between would be missed)

> Join performed during execve() just before the main executable is loaded in the process memory

Principles defined



Huawei Proprietary - Restricted Distribution27

Host (init_ima_ns)

ima_ns 1 ima_ns 3

𝑃3

𝑃5 𝑃6 𝑃8

𝑃1

𝑃4

𝑃7

𝑃2

ima_ns 2

File 1 File 2 File 3 File 5

fork()

Host IMA measurements list

ima_ns 1 measurements list

ima_ns 2 measurements list

ima_ns 3 measurements list

𝑃9

File 4

System’s objects (e.g. files)

Kernel-related events are evaluated by all IMA namespaces



Huawei Proprietary - Restricted Distribution28

Host (init_ima_ns)

ima_ns 1 ima_ns 3

𝑃3

𝑃5 𝑃6 𝑃8

𝑃1

𝑃4

𝑃7

𝑃2

ima_ns 2

File 1 File 2 File 3 File 5

fork()

Host IMA measurements list

ima_ns 1 measurements list

ima_ns 2 measurements list

ima_ns 3 measurements list

𝑃9

File 4

finit_module()

10 22b…90e sha1:f25…aa2 File4

10 22b…90e sha1:f25…aa2 File4

10 22b…90e sha1:f25…aa2 File4

10 22b…90e sha1:f25…aa2 File4

System’s objects (e.g. files)

Kernel-related events are evaluated by all IMA namespaces



Huawei Proprietary - Restricted Distribution29

• Per-IMA namespace measurements list

• IMA namespace as a processes’ (sub)set

> File don’t belong to IMA namespaces and can be shared among namespaces

• An IMA namespace is not aware of children IMA namespaces

> A process cannot escape its current IMA namespace

• The kernel is common for all IMA namespaces

> For example kernel modules loading affects all IMA namespaces

• An IMA namespace cannot miss integrity events related to its associated processes

> No gap between IMA namespace creation and activation (events in-between would be missed)

> Join performed during execve() just before the main executable is loaded in the process memory

Principles defined



Huawei Proprietary - Restricted Distribution30

• clone3() and unshare() don’t allow atomic creation and configuration

> Namespace’s configuration parameters cannot be passed to those system calls

> Stefan’s proposal is to join an (inactive) IMA namespace, configure and activate it later (not atomically)

> Issue: the new IMA namespace misses process’ events until it is activated

• Don’t allow creation with direct call to clone3() or unshare()

> clone3() already disabled (CLONE_NEWIMA overlaps with CSIGNAL)

> unshare() has to be explicitly denied

• Introduce a new atomic procedure to create and configure the IMA namespace

> Introduce a new “unshare” file in the securityfs which receives (through a write operation) the configuration and 

triggers the new IMA namespace creation

> Forbid joining it until creation and configuration are complete

No gap between IMA namespace creation and activation



Huawei Proprietary - Restricted Distribution31

• Stefan’s proposal allows a process, with executable code already loaded, to join a new or existing IMA 

namespace

> Issue: target IMA namespace will contain a process with unknown integrity status (loaded code not measured)

• Only chance, to start from a clean integrity state from the IMA perspective, is during execve()

> It is the only time when joining a new IMA namespace is allowed

> This guarantees that the new IMA namespace can evaluate the loading of the main executable

• Since a process cannot join until execve(), the new IMA namespace is temporary referenced by a new 

nsproxy field called ima_ns_for_children

> Deferred joining approach is also adopted by PID and time namespace

> Only time namespace is joined during execve() (later than IMA BPRM_CHECK hook)

Join performed during execve()



Huawei Proprietary - Restricted Distribution32

Join performed during execve() (2)

task 1

ima_ns

ima_ns_for_children

-> [000001]

-> [000001]

𝑃1

ima_ns_1



Huawei Proprietary - Restricted Distribution33

Join performed during execve() (2)

task 1

ima_ns

ima_ns_for_children

-> [000001]

-> [000001]

$ cat config > /sys/kernel/security/ima/unshare
task 1

ima_ns

ima_ns_for_children

-> [000001]

-> [000002]

𝑃1

ima_ns_1



Huawei Proprietary - Restricted Distribution34

Join performed during execve() (2)

task 1

ima_ns

ima_ns_for_children

-> [000001]

-> [000001]

$ cat config > /sys/kernel/security/ima/unshare
task 1

ima_ns

ima_ns_for_children

-> [000001]

-> [000002]

𝑃1

ima_ns_1 𝑃1

ima_ns_1

ima_ns_2
$ cat config > /sys/kernel/security/ima/unshare



Huawei Proprietary - Restricted Distribution35

Join performed during execve() (2)

task 1

ima_ns

ima_ns_for_children

-> [000001]

-> [000001]

$ cat config > /sys/kernel/security/ima/unshare
task 1

ima_ns

ima_ns_for_children

-> [000001]

-> [000002]

task 1

ima_ns

ima_ns_for_children

-> [000002]

-> [000002]

execve()

𝑃1

ima_ns_1 𝑃1

ima_ns_1

ima_ns_2
$ cat config > /sys/kernel/security/ima/unshare



Huawei Proprietary - Restricted Distribution36

Join performed during execve() (2)

task 1

ima_ns

ima_ns_for_children

-> [000001]

-> [000001]

$ cat config > /sys/kernel/security/ima/unshare
task 1

ima_ns

ima_ns_for_children

-> [000001]

-> [000002]

task 1

ima_ns

ima_ns_for_children

-> [000002]

-> [000002]

execve()

𝑃1

ima_ns_1 𝑃1

ima_ns_1

ima_ns_2

P1: execve()

𝑃1

ima_ns_1

ima_ns_2

$ cat config > /sys/kernel/security/ima/unshare



Huawei Proprietary - Restricted Distribution37

• Protect each IMA namespace measurements list with a RoT

• Ensure the IMA namespace has been configured accordingly to user requirements

• Ensure correct binding between IMA namespace and user application

• Which user namespace is used for IMA namespace policy evaluation (owner?)

• Performance impact (e.g. memory consumption)

• Per-IMA namespace metadata

> Locking

Open Problems



Huawei Proprietary - Restricted Distribution38

• IMA namespace is promising for upstream

> Already reviewed by maintainers 

• Stefan’s proposal very close to our requirements

> Issue: a clear design is missing

> We addressed this design gap

• Let’s discuss about our design changes and implementation

Conclusion



Copyright©2018 Huawei Technologies Co., Ltd.

All Rights Reserved.

The information in this document may contain predictive 

statements including, without limitation, statements regarding 

the future financial and operating results, future product 

portfolio, new technology, etc. There are a number of factors that 

could cause actual results and developments to differ materially 

from those expressed or implied in the predictive statements. 

Therefore, such information is provided for reference purpose 

only and constitutes neither an offer nor an acceptance. Huawei 

may change the information at any time without notice. 

Bring digital to every person, home and 
organization for a fully connected, 
intelligent world.

Thank you.


