WireGuard and GRO?
Improving WireGuard performance

Daniel Borkmann
Anton Protopopov
Martynas Pumputis

ISOVALENT

now part of cisco

LINUX
PLUMBERS
CONFERENCE vienna, Austria / Sept. 18-20, 2024

History (Cilium LB)

Cilium v1.6: BPF NodePort

| [ethe] | n | Lethe] |
.SVC lookup & DNAT

1S
2.Is endpoint remote?
2.1 tunnel or direct?
2.2.BPF SNAT
2.3.fib_lookup()
2.4.Redirect
192.168.0.1 192.168.0.2
__________________________________ =5 figdeR

192.168.0.1:33000 -> 1.1.1.1:80

10.100.1.1:60000 -> 192.168.0.1:31000

"Making the Kubernetes Service Abstraction Scale using BPF", LPC 2019

https://lpc.events/event/4/contributions/458/

History (Cilium LB)

GET /HTTP1.1

History (Cilium Encryption)

® |PSec integration since Cilium v1.14 for inter-container traffic

@)

©)
©)
©)

Host stack does encryption via kernel XFRM framework

Cannot just bpf _redirect() to encrypt
Tricky integration due to reliance on skb->tc_index and skb->mark

No automated key rotation (no IKE)

® \WireGuard in Cl to test Cilium LB L3 to L2 netdev redirection

©)
©)

Dedicated netdev for encryption (cilium_wg0)
Simple setup and auto key rotation (just exchange pub keys)

Cilium WireGuard integration

: redis i é i nginx i
i i i i
cilium_wgo cilium wgo

Cilium WireGuard integration

. 1. wg genkey # 1-{pub,priv}.keys 1. wg genkey # 2-{pub,priv}.keys

2. wg set cilium_wg0 i : 2. wg set cilium_wg0

: listen-port 51871 : listen-port 51871
private-key 1-priv.key § private-key 2-priv.key
peer 2-pub.key § peer 1-pub.key
allowed-ips 1.1.1.1,<...> : allowed-ips 1.1.2.1,<...>

endpoint 192.168.0.2:51871 : endpoint 192.168.0.1:51871

Cilium WireGuard integration

1. wg genkey # 1-{pub,priv}.keys ‘ 1. wg genkey # 2-{pub,priv}.keys

2. wg set cilium_wg0 4 2. wg set cilium_wg0

' listen-port 51871 § : listen-port 51871
private-key 1-priv.key private-key 2-priv.key
peer 2-pub.key g : peer 1-pub.key
allowed-ips 1.1.1.1,<...> : § allowed-ips 1.1.2.1,<...>

endpoint 192.168.0.2:51871 : : endpoint 192.168.0.1:51871

Cilium WireGuard (userspace) integration

e User-space mode to support WireGuard on < 5.6 kernels (now deprecated)
o Relies on TUN device
o Not intended for production use (cannot withstand cilium-agent restarts)
o Probably not performant enough (?)

WireGuard driver vs WireGuard-go

e WireGuard-go got support for UDP GRO/GSO
o Blog: “Userspace isn't slow, some kernel interfaces are!”
o Blog: “Surpassing 10Gb/s over Tailscale”

UDP GSO
kernel kernel /
app TCP | TUN driver | wireguard-go [JI J/) uoP])) device |] | remote peer
Transmit with TUN TSO and UDP sendmmsg()
’ UDP GRO
kernel kernel
app TcP | TUN driver | wireguard-go | | | UDP | | | (device | | | remote peer

Receive with UDP recvmmsg() and TUN GRO

https://tailscale.com/blog/throughput-improvements
https://tailscale.com/blog/more-throughput

WireGuard benchmark setup

AMD Ryzen 9 3950X @ 3.5 GHz, 128G RAM @ 3.2 GHz, PCle 4.0
100Gb/s dual port ConnectX-6 Dx (mIx5), LRO enabled
PREEMPT_NONE, IRQs pinned, no SMT, CPU gov: performance
CPU mitigations compiled out

BIG TCP enabled

Git trees: net tree, wireguard-go (12269c27617)

A

DB

TCP stream single flow host to host over wire, 1500 MTU

50,000

40,000

30,000

20,000

10,000

I baseline (no wg)

(higher is better)

[wg driver (no changes)

~ wg-go (user space)

wireguard-go ~40% higher
4 tput than native driver

Mbps

DB

TCP stream single flow host to host over wire, 8k MTU

80,000

60,000

40,000

20,000

(higher is better)

I baseline (nowg) [wg driver (no changes) | wg-go (user space)

native driver ~¥36% higher tput
/ than wireguard-go

Mbps

DB

Transactions per second host to host over wire, 1500 MTU
(higher is better)

[baseline (nowg) [wg driver (no changes) = wg-go (user space)

100,000 -
75,000
50,000 -
native driver ~140% higher tps
/ than wireguard-go
25,000 - r

Request-Response Transactions/sec

DB

Transactions per second host to host over wire, 8k MTU
(higher is better)

[baseline (nowg) [wg driver (no changes) = wg-go (user space)

100,000
75,000 -
50,000 -
native driver ~145% higher tps
/ than wireguard-go
25,000 - ~

Request-Response Transactions/sec

Can we still do better for the native driver?

e How does GRO/GSO currently work in the native WireGuard driver?
e GRO:

o Individual UDP packets (no GRO) go up the stack into WireGuard socket

o WireGuard decrypts, then aggregates via napi_gro_receive(&peer->napi, skb)
e GSO:

o Stack can send up to 64k GSO packets down into wg device
o WireGuard segments via skb_gso_segment(skb, 0), then encrypts

> Ethernet II, Src: a2:e3:ac:4a:b5:39 (a2:e3:ac:4a:b5:39), Dst: 6e:57:a7:64:8e:fe (6e:57:a7:6
> Internet Protocol Version 4, Src: 10.0.4.1 (10.0.4.1), Dst: 10.0.4.2 (10.0.4.2)

>-User Datagram Protocol, Src Port: 51820, Dst Port: 47278

v-WireGuard

Type: Tramspcrt Data (*‘) nonce/counter for replay

Reserved (protection part of header
Receiver: 0x768bd016
Counter: 0 Means: skb_gso_segment()

v- Packet (encrypted) |S here tO Stay
Ciphertext: ad6bb0478e6afd812becc5946c2d5chd4bc1970938796f0d. . . .
Auth Tag: 77eb5c70e898254183591ad30d32fba8
(authentication tag verified)

Can we still do better for the native driver?

Low hanging fruit? Two ideas:

GRO:
o

Instead of sending individual packets up the stack into the UDP socket, why not take a
similar approach as xfrm’s ESP offload?

GRO handler enqueues the skb internally for decryption, returns
ERR_PTR(-EINPROGRESS) back to GRO engine to tell skb has been GRO_CONSUMED
Details: see Steffen’s |IPsec GRO layer decapsulation

Enable BIG TCP support for the driver to allow even bigger packets to reach the device:
netif set tso_max_size(dev, GSO_MAX_SIZE) during dev setup

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/net/ipv4/esp4_offload.c
https://lore.kernel.org/netdev/1486979881-24635-1-git-send-email-steffen.klassert@secunet.com/

DB

static size_t wg_gro_candidate(struct sk_buff xskb)

{

if (unlikely(skb->len < sizeof(struct message_header)))
return false;
if (SKB_TYPE_LE32(skb) == cpu_to_1e32(MESSAGE_DATA) &&
skb—>1len >= MESSAGE_MINIMUM_LENGTH)
return true;
return false;

struct sk_buff xwg_gro_receive(struct sock xsk,

out:

struct list_head xhead,
struct sk_buff *skb)

struct wg_device *xwg = sk->sk_user_data;
int offset = skb_gro_offset(skb);

if (!'pskb_pull(skb, offset))
return NULL;
if (!wg_gro_candidate(skb))
goto out;
skb_mark_not_on_list(skb);
PACKET_CB(skb)->ds = ip_tunnel_get_dsfield(ip_hdr(skb), skb);
wg_packet_consume_data(wg, skb);
return ERR_PTR(-EINPROGRESS);

skb_push(skb, offset);
NAPI_GRO_CB(skb)->same_flow = 0;
NAPI_GRO_CB(skb)->flush = 1;
return NULL;

int wg_socket_init(struct wg_device *wg, ul6 port)

{
struct net xnet;
int ret;
struct udp_tunnel_sock_cfg cfg = {
.sk_user_data = wg,
.encap_type =1,
.encap_rcv = wg_receive,

.gro_receive wg_gro_receive,

+;

UDP socket registers GRO handler

GRO handler pushes data packets
directly for decryption when GRO
engine is invoked from phys dev

ESP GRO added INET_ESP_OFFLOAD
Kconfig knob, do we need a similar
Kconfig knob for WireGuard, or an
attribute during device creation?

TCP stream single flow host to host over wire, 1500 MTU
(higher is better)

I wg driver (no changes) [wg driver (L2 GRO) [wg driver (L2 GRO + BIG TCP)
| wg-go (user space)

10,000

~15% improvement

7.500 8031

5,000

2,500

Mbps

TCP stream single flow host to host over wire, 8k MTU
(higher is better)

I wg driver (no changes) W wg driver (L2 GRO)
.~ wg-go (user space)

B wg driver (L2 GRO + BIG TCP)

~17% improvement

25,000 Vg
<«—— BIG TCP seems less
20,000 effective here
15,000 S
15,032
10,000
5,000

Mbps

DB

Transactions per second host to host over wire, 8k MTU
(higher is better)

0 wg driver (no changes) [wg driver (L2 GRO) [wg-go (L2 GRO + BIG TCP)
~ wg-go (user space)

30,000

20,000

10,000 —
10,094

Request-Response Transactions/sec

What about multiple flows?

e Rationale: Cilium creates a single cilium_wg0 device for all east-west Pod/Pod traffic
o BPF datapath basically bpf_redirect()’s to cilium_wg0
® Question: How well does it scale when multiple parallel flows hit cilium_wg0?

TCP stream multi flow host to host over wire, 8k MTU
(higher is better)

30,000 — i =
' 25323 24,973

|
2ZV B o —

Single wg device

Why? No RSS scaling!

10,000 -+ All wg encrypted traffic
to a remote peer has the
same UDP dst+src IP/port

Mbps

1 2 3 4 # TCP_STREAM’s 5
DB

DB

TCP stream multi flow host to host over wire, 8k MTU

30,000

22,238

20,000 +

(higher is better)

26,495 26,173 95393

+

24973

N\

Single wg device

Why? No RSS scaling!

12:14:02.653092 IP 192.168.1.59}51111|> 192.168.1.6@.52222f UDP, length 96
12:14:12.786179 IP 192.168.1.60}52222 |> 192.168.1.59.51111f UDP, length 32

All wg encrypted traffic
to a remote peer has the
same UDP dst+src IP/port

Mbps

(configured wg listen ports)

2 3 4

TCP_STREAM’s 5

What about multiple flows?

e Potential improvements?

o Creating multiple WireGuard devices under a bond and then load-balance based on hash
m Currently not possible due to bond being an L2 device and WireGuard L3
m Missing .ndo_set_mac_address but also refuses after dummy implementation
m Probably new bond mode needed (?) or fixups when bond/slave device
are both in NOARP mode. Would be nice for bpf_redirect() in datapath.
O

Creating multiple WireGuard devices and load-balance via multipath next hops
m Works in terms of routing, but WireGuard reveals unexpected behavior

ip r

default via 192.168.1.1 dev enp5s@ proto dhcp src 192.168.1.119 metric 100

10.0.0.0/24 dev enpl@s@fOnpd proto kernel scope link src 10.0.0.2
10.1.0.1

nexthop dev wg@ weight 1
nexthop dev wgl weight 1

What about multiple flows?

e Several WireGuard devices on same node, options tried:
o Different listen-port but otherwise same peer key/endpoint/allowed-ip settings?
m Currently buggy: allowed-ips overridden/removed to “none”
peer: xvYINOXRTf30caylpH5EFQEY1uKY@Zp1bZKFEDIfE1I=
endpoint: 10.0.0.1:9001
allowed ips: (none)
o Different listen-port and different key-pairs, but same endpoint/allowed-ip settings?
m Same behavior as above (needs fixing)

What about multiple flows?

e Several WireGuard devices on same node, options tried:
o Different listen-port but otherwise same peer key/endpoint/allowed-ip settings?
m Currently buggy: allowed-ips overridden/removed to “none”
peer: xvYINOXRTf30caylpHSEFGEYluKY@Zp1bZkFEDIfE1I=
endpoint: 10.0.0.1:9001
allowed ips: (none)
o Different listen-port and different key-pairs, but same endpoint/allowed-ip settings?
m Same behavior as above (needs fixing)
e What about a WireGuard mode to have inner hash part of outer src port?
o Downside: Exposes information of different flows, assumes single wg dev per host
e Workaround for test: all properties different (key-pairs/endpoint/allowed-ip)
o This works for testing the idea, but is not practical for production

TCP stream multi flow host to host over wire, 8k MTU
(higher is better)

& singlewgdev @ per-# flows wg dev

50,000 —
1 42212 42,993

39,354 = 9

40,000 - TR

+~70% total tput T

30,000 26495 26,173 25,323 24.973
2?-,238 ~G— —- —e

20,000 —+

10,000 +

Mbps

1 2 3 4 #TCP_STREAM’s 5
DB

Transactions per second host to host over wire, 8k MTU
(higher is better)

& singlewgdev @ per-# flows wg dev

+~35% total tps
125,000 —
1 106,570
100,000 - 87,127 T
T 78,692
T 71,040
68,327 '
75,000 -+ /
1 57,442
50,000 -
25,851
25,000 -
R—

1 2 3 4 # TCP_RR'’s 5

Other findings from testing:

Huge cost from page clearing
triggered by default inside wg
via skb_cow_data

[0 clear_page_rep
get_page_from_freelist

__kmalloc_large_node_noprof __napi_poll
c
([[chacha x86.64]] "I [[.. [[poly1305_x86_64]]
T T E——— U R

[[libchacha20poly1305]]
[[libchacha20poly1305]]

wg: decrypt_packet() :

/* We ensure that the network header +is part of the packet before we
* call skb_cow_data, so that there's no chance that data is removed
* from the skb, so that later we can extract the original endpoint.

*/ Huge cost from page clearing

offset = -skb_network_offset(skb); . ..
skb_push(skb, offset); triggered by default inside wg

num_frags = skb_cow_data(skb, 0, &trailer); VkiSkb_COVM_data
offset += sizeof(struct message_data);
skb_pull(skb, offset);

[0 clear_page_rep
get_page_from_freelist

__kmalloc_large_node_noprof __napi_poll
c
[[chachax86164]) 0 ([[[poly1305_x86_64]]
[ChEChaRXE GG [[5oIy13050X86064]] memcpy_orig

[[libchacha20poly1305]]
[[libchacha20poly1305]] skb_cow_data

config INIT_ON_ALLOC_DEFAULT_ON
bool "Enable heap memory zeroing on allocation by default"
depends on !KMSAN
help

This has the effect of setting "init_on_alloc=1" on the kernel Huge cost from page clearing
command line. This can be disabled with "init_on_alloc=0".] AR

When "dinit_on_alloc" 1is enabled, all page allocator and slab ttjlggered by default inside we
allocator memory will be zeroed when allocated, eliminating Via skb_cow_data

many kinds of "uninitialized heap memory" flaws, especially
heap content exposures. The performance impact varies by
workload, but most cases see <1% impact. Some synthetic
workloads have measured as high as 7%.

[0 clear_page_rep
get_page_from_freelist

__kmalloc_large_node_noprof __napi_poll

C..

[[[chacha x86.64]] I [[.. [[poly1305_x86_64]]
[[[chacharx86 5641 I [[poly1305_x86_64]] memcpy_orig

[[libchacha20poly1305]]
[[libchacha20poly1305]]

Other TODO items
oo

® Once RSS is solved, experiment with CPU locality Q : B
in terms of encryption/decryption O (current O_'D_'D L~
e _ cacheline_group_begin/end for RX/TX mostly Q multi-core O—»D—»D—»D—»D
data in hot path crypto) : gy
e Atomic queue counter shared across CPUs Q

e Complete removal of wg driver segmenting skbs? Q 0L 6 O_'D_'D_'D_’D
o Probably not possible due to nonce as part O
of wg header

https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/commit/?id=8b5553ace83cced775eefd0f3f18b5c6214ccf7a

Cilium WireGuard integration: future? (~KubeCon’24)

Acknowledgements

Jason A. Donenfeld (WireGuard)

Jordan Whited & James Tucker (WireGuard-go improvements)
Sebastian Wicki (initial Cilium integration co-author)
Cilium, netdev & BPF communities

Thanks! Questions?

Cilium + WireGuard: https://docs.cilium.io/en/stable/security/network/encryption-wireguard/
PoC code: https://github.com/cilium/linux/commits/pr/wg

ﬁ Vienna, Austria / Sept. 18-20, 2024 I S OVA L E N T

now part of CIsCo

https://docs.cilium.io/en/stable/security/network/encryption-wireguard/
https://github.com/cilium/linux/commits/pr/wg

