
WireGuard and GRO?
Improving WireGuard performance

Daniel Borkmann
Anton Protopopov

Martynas Pumputis

History (Cilium LB)

"Making the Kubernetes Service Abstraction Scale using BPF", LPC 2019

https://lpc.events/event/4/contributions/458/

GET / HTTP1.1

History (Cilium LB)

eth0

eth0

redis

lxc0

node1 eth0

eth0

nginx

lxc0

node2

History (Cilium Encryption)

● IPSec integration since Cilium v1.14 for inter-container traffic
○ Host stack does encryption via kernel XFRM framework
○ Cannot just bpf_redirect() to encrypt
○ Tricky integration due to reliance on skb->tc_index and skb->mark
○ No automated key rotation (no IKE)

● WireGuard in CI to test Cilium LB L3 to L2 netdev redirection
○ Dedicated netdev for encryption (cilium_wg0)
○ Simple setup and auto key rotation (just exchange pub keys)

Cilium WireGuard integration

eth0

eth0

redis

lxc0

node1 eth0

eth0

nginx

lxc0

node2

cilium_wg0 cilium_wg0

Cilium WireGuard integration

eth0

eth0

redis

lxc0

node1 eth0

eth0

nginx

lxc0

node2

cilium_wg0 cilium_wg0

1. wg genkey # 1-{pub,priv}.keys
2. wg set cilium_wg0
 listen-port 51871
 private-key 1-priv.key
 peer 2-pub.key
 allowed-ips 1.1.1.1,<…>
 endpoint 192.168.0.2:51871

1. wg genkey # 2-{pub,priv}.keys
2. wg set cilium_wg0
 listen-port 51871
 private-key 2-priv.key
 peer 1-pub.key
 allowed-ips 1.1.2.1,<…>
 endpoint 192.168.0.1:51871

Cilium WireGuard integration

eth0

eth0

redis

lxc0

node1 eth0

eth0

nginx

lxc0

node2

cilium_wg0 cilium_wg0
1

2 3

4

5 6

7

1. wg genkey # 1-{pub,priv}.keys
2. wg set cilium_wg0
 listen-port 51871
 private-key 1-priv.key
 peer 2-pub.key
 allowed-ips 1.1.1.1,<…>
 endpoint 192.168.0.2:51871

1. wg genkey # 2-{pub,priv}.keys
2. wg set cilium_wg0
 listen-port 51871
 private-key 2-priv.key
 peer 1-pub.key
 allowed-ips 1.1.2.1,<…>
 endpoint 192.168.0.1:51871

Cilium WireGuard (userspace) integration

● User-space mode to support WireGuard on < 5.6 kernels (now deprecated)
○ Relies on TUN device
○ Not intended for production use (cannot withstand cilium-agent restarts)
○ Probably not performant enough (?)

WireGuard driver vs WireGuard-go

● WireGuard-go got support for UDP GRO/GSO
○ Blog: “Userspace isn't slow, some kernel interfaces are!”
○ Blog: “Surpassing 10Gb/s over Tailscale”

DB

UDP GSO

UDP GRO

Image source: tailscale

https://tailscale.com/blog/throughput-improvements
https://tailscale.com/blog/more-throughput

WireGuard benchmark setup

● AMD Ryzen 9 3950X @ 3.5 GHz, 128G RAM @ 3.2 GHz, PCIe 4.0
● 100Gb/s dual port ConnectX-6 Dx (mlx5), LRO enabled
● PREEMPT_NONE, IRQs pinned, no SMT, CPU gov: performance
● CPU mitigations compiled out
● BIG TCP enabled
● Git trees: net tree, wireguard-go (12269c27617)

DB

DB Back to back: AMD Ryzen 9 3950X @ 3.5 GHz, 128G RAM @ 3.2 GHz, PCIe 4.0, ConnectX-6 Dx, mlx5 driver, striding mode, LRO, 1500 MTU

wireguard-go ~40% higher
tput than native driver

DB Back to back: AMD Ryzen 9 3950X @ 3.5 GHz, 128G RAM @ 3.2 GHz, PCIe 4.0, ConnectX-6 Dx, mlx5 driver, striding mode, LRO, 8k MTU

native driver ~36% higher tput
than wireguard-go

DB Back to back: AMD Ryzen 9 3950X @ 3.5 GHz, 128G RAM @ 3.2 GHz, PCIe 4.0, ConnectX-6 Dx, mlx5 driver, striding mode, LRO, 1500 MTU

native driver ~140% higher tps
than wireguard-go

DB Back to back: AMD Ryzen 9 3950X @ 3.5 GHz, 128G RAM @ 3.2 GHz, PCIe 4.0, ConnectX-6 Dx, mlx5 driver, striding mode, LRO, 8k MTU

native driver ~145% higher tps
than wireguard-go

Can we still do better for the native driver?

● How does GRO/GSO currently work in the native WireGuard driver?
● GRO:

○ Individual UDP packets (no GRO) go up the stack into WireGuard socket
○ WireGuard decrypts, then aggregates via napi_gro_receive(&peer->napi, skb)

● GSO:
○ Stack can send up to 64k GSO packets down into wg device
○ WireGuard segments via skb_gso_segment(skb, 0), then encrypts

DB

nonce/counter for replay
protection part of header
Means: skb_gso_segment()
is here to stay..

Can we still do better for the native driver?

● Low hanging fruit? Two ideas:
● GRO:

○ Instead of sending individual packets up the stack into the UDP socket, why not take a
similar approach as xfrm’s ESP offload?

○ GRO handler enqueues the skb internally for decryption, returns
ERR_PTR(-EINPROGRESS) back to GRO engine to tell skb has been GRO_CONSUMED

○ Details: see Steffen’s IPsec GRO layer decapsulation
● GSO:

○ Enable BIG TCP support for the driver to allow even bigger packets to reach the device:
netif_set_tso_max_size(dev, GSO_MAX_SIZE) during dev setup

DB

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/net/ipv4/esp4_offload.c
https://lore.kernel.org/netdev/1486979881-24635-1-git-send-email-steffen.klassert@secunet.com/

DB

...

UDP socket registers GRO handler

GRO handler pushes data packets
directly for decryption when GRO
engine is invoked from phys dev

ESP GRO added INET_ESP_OFFLOAD
Kconfig knob, do we need a similar
Kconfig knob for WireGuard, or an
attribute during device creation?

DB Back to back: AMD Ryzen 9 3950X @ 3.5 GHz, 128G RAM @ 3.2 GHz, PCIe 4.0, ConnectX-6 Dx, mlx5 driver, striding mode, LRO, 1500 MTU

~15% improvement

DB Back to back: AMD Ryzen 9 3950X @ 3.5 GHz, 128G RAM @ 3.2 GHz, PCIe 4.0, ConnectX-6 Dx, mlx5 driver, striding mode, LRO, 8k MTU

~17% improvement

BIG TCP seems less
effective here

DB Back to back: AMD Ryzen 9 3950X @ 3.5 GHz, 128G RAM @ 3.2 GHz, PCIe 4.0, ConnectX-6 Dx, mlx5 driver, striding mode, LRO, 8k MTU

What about multiple flows?

● Rationale: Cilium creates a single cilium_wg0 device for all east-west Pod/Pod traffic
○ BPF datapath basically bpf_redirect()’s to cilium_wg0

● Question: How well does it scale when multiple parallel flows hit cilium_wg0?

DB

DB Back to back: AMD Ryzen 9 3950X @ 3.5 GHz, 128G RAM @ 3.2 GHz, PCIe 4.0, ConnectX-6 Dx, mlx5 driver, striding mode, LRO, 8k MTU

Single wg device

Why? No RSS scaling!

All wg encrypted traffic
to a remote peer has the
same UDP dst+src IP/port

TCP_STREAM’s

M
b

p
s

DB Back to back: AMD Ryzen 9 3950X @ 3.5 GHz, 128G RAM @ 3.2 GHz, PCIe 4.0, ConnectX-6 Dx, mlx5 driver, striding mode, LRO, 8k MTU

Single wg device

Why? No RSS scaling!

All wg encrypted traffic
to a remote peer has the
same UDP dst+src IP/port

TCP_STREAM’s

M
b

p
s

(configured wg listen ports)

What about multiple flows?

● Potential improvements?
○ Creating multiple WireGuard devices under a bond and then load-balance based on hash

■ Currently not possible due to bond being an L2 device and WireGuard L3
■ Missing .ndo_set_mac_address but also refuses after dummy implementation
■ Probably new bond mode needed (?) or fixups when bond/slave device

are both in NOARP mode. Would be nice for bpf_redirect() in datapath.
○ Creating multiple WireGuard devices and load-balance via multipath next hops

■ Works in terms of routing, but WireGuard reveals unexpected behavior

DB

What about multiple flows?

● Several WireGuard devices on same node, options tried:
○ Different listen-port but otherwise same peer key/endpoint/allowed-ip settings?

■ Currently buggy: allowed-ips overridden/removed to “none”

○ Different listen-port and different key-pairs, but same endpoint/allowed-ip settings?
■ Same behavior as above (needs fixing)

DB

What about multiple flows?

● Several WireGuard devices on same node, options tried:
○ Different listen-port but otherwise same peer key/endpoint/allowed-ip settings?

■ Currently buggy: allowed-ips overridden/removed to “none”

○ Different listen-port and different key-pairs, but same endpoint/allowed-ip settings?
■ Same behavior as above (needs fixing)

● What about a WireGuard mode to have inner hash part of outer src port?
○ Downside: Exposes information of different flows, assumes single wg dev per host

● Workaround for test: all properties different (key-pairs/endpoint/allowed-ip)
○ This works for testing the idea, but is not practical for production

DB

DB Back to back: AMD Ryzen 9 3950X @ 3.5 GHz, 128G RAM @ 3.2 GHz, PCIe 4.0, ConnectX-6 Dx, mlx5 driver, striding mode, LRO, 8k MTU

TCP_STREAM’s

+~70% total tput

M
b

p
s

DB Back to back: AMD Ryzen 9 3950X @ 3.5 GHz, 128G RAM @ 3.2 GHz, PCIe 4.0, ConnectX-6 Dx, mlx5 driver, striding mode, LRO, 8k MTU

TCP_RR’s

+~35% total tps

tp
s

Other findings from testing:

DB

Huge cost from page clearing
triggered by default inside wg
via skb_cow_data

Other findings from testing:

DB

wg: decrypt_packet() :

Huge cost from page clearing
triggered by default inside wg
via skb_cow_data

Other findings from testing:

DB

Huge cost from page clearing
triggered by default inside wg
via skb_cow_data

Other TODO items

● Once RSS is solved, experiment with CPU locality
in terms of encryption/decryption

● __cacheline_group_begin/end for RX/TX mostly
data in hot path

● Atomic queue counter shared across CPUs
● Complete removal of wg driver segmenting skbs?

○ Probably not possible due to nonce as part
of wg header

DB

(current
 multi-core
 crypto)

Image source: https://www.wireguard.com/talks/lpc2018-wireguard-slides.pdf

https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/commit/?id=8b5553ace83cced775eefd0f3f18b5c6214ccf7a

Cilium WireGuard integration: future? (~KubeCon’24)

eth0

eth0

redis

lxc0

node1 eth0

eth0

nginx

lxc0

node2

1

2 3

4

5 6

7

DB

cilium_wg0 cilium_wg0

Acknowledgements

Jason A. Donenfeld (WireGuard)
Jordan Whited & James Tucker (WireGuard-go improvements)
Sebastian Wicki (initial Cilium integration co-author)
Cilium, netdev & BPF communities

DB

Thanks! Questions?

Cilium + WireGuard: https://docs.cilium.io/en/stable/security/network/encryption-wireguard/
PoC code: https://github.com/cilium/linux/commits/pr/wg

https://docs.cilium.io/en/stable/security/network/encryption-wireguard/
https://github.com/cilium/linux/commits/pr/wg

