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Problem Statement

e Help developers answer
o Frequently-asked, what-if questions about cache usage of code
o Particularly for unseen and untested workloads

e Example questions
o How does cache usage scale with the number of connections?
o Whatis my code’s cache hit/miss profile?



Motivating Example

e Alice wants to build a fast, in-memory key-value store
o Hash table + network stack (off-the-shelf)
o Throughput bottlenecked by L3 cache misses

e Alice needs to answer questions such as W
o What workloads lead to consistent cache misses?
o How much of the cache does each component use?



Existing Tools are Insufficient!

e Developers rely on profilers and HW counters today
e No predictive capability, insights limited to the concrete inputs used

e Developers must manually reverse engineer answers to key questions
o Tedious and error-prone, particularly for third-party code

Recent patch showed how Linux’'s TCP stack had been incurring
a bloated cache footprint, leading to slowdowns of up to 45%




A Lack Of Abstraction For Cache Usage

e Alice needs visibility into how the code processes an abstract/symbolic workload

e Only way to obtain this information today is to read/profile the implementation

Can there exist an abstract/symbolic representation that
helps developers efficiently reason about cache usage?




Memory Distillates

e Representation that retains all information relevant to how the code accesses memory
o Discards everything else

e Given the same inputs as the code, the distillate
o Produces an identical trace of memory accesses

o But does not produce correct outputs

» Memory Trace
Code > Functional Outputs
Input
Distillate » Memory Trace @
> Functional Outputs @




Cache Footprint AnalyzeR (CFAR)

e Answers questions about cache usage using two-step workflow
o Distillation: Extracts distillate using automated program analysis
o Projection: Devs query distillate to answer specific questions

e Since distillate is precise, CFAR can answer diverse questions about cache usage

< »R

» Distill
Code istillate < ’R

Distillation Projection



Memory distillates provide a simple yet precise
abstraction for reasoning about cache usage
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Example Syscall

int sys_create(int fd, fn_t fn, uint64_t type,
uint64_t value, uint64_t omode) {

// State: pid, proc_tbl, file_tbl
Sys_create( ) from Hyperkerne| // Checking for invalid inputs
if (type == FD_NONE) return —-EINVAL;
if (&proc_tbl[pid]->ofile[fd] != @) return -EINVAL;
struct filex file = &file_tbl[fn];
if (file->refcnt != @) return -EINVAL;

// Update state
file->type = type;

file->value value;

file->omode omode;
file—>refcnt = file->offset = 0;
set_fd(pid, fd, fn);

return 0;




Example Syscall

sys_create() from Hyperkernel

Kernel state: proc_table, filetable
Implemented as arrays

Input-dependent access pattern

int sys_create(int fd, fn_t fn, uint64_t type,
uint64_t value, uint64_t omode) {
// State: pid, proc_tbl, file_tbl
// Checking for invalid inputs
if (type == FD NONE) return -EINVAL;

Ef (&proc_tbl[pid]—>ofile[fd] != 0)]return —-EINVAL;

struct filex file = &file_tbl([fn];
if (file->refcnt != @) return -EINVAL;

// Update state
file->type = type;

file->value value;

file->omode omode;
file—>refcnt = file->offset = 0;
set_fd(pid, fd, fn);

return 0;




CFAR Distillate: Data Cache

def sys_create_dcache(fd, fn, type, value, omodc):
# State: pid, proc_tbl, file_tbl

if type == FD_NONE: #6 accesses
return [(w, rsp-8),(w,rsp-16),..,(r,rsp-8)]

if [proc_table+256xpid+64+8xfd]: #7 accesses
return [(w,rsp-8),(w,rsp-16),..,(r,proc_tbl+256xpid+64+8xfd)
yeu,(r,rsp-8)1
# Succesful create. 17 accesses
return [(w,rsp-8),(w,rsp-16),..,(r,proc_tbl+256xpid+64+8xfd),..,
(r,file_tb1+40xfn+8), (w, file_tb1+40%fn), (w,file_tbl+40%fn+16)
.+, (w,proc_tb1+256%pid+64+8xfd),.., (r,rsp-8)]
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CFAR Distillate: Data Cache

The data cache distillate
of a program P is a program P44!a

}gcbzaz )
dist takes the same inputs as P (I)

and maintains the same state (S)

.

rdef sys_create_dcache(fd, fn, type, value, omodc)

# State: pid, proc_tbl, file_tbl }

if type == FD_NONE: #6 accesses
return [(w,rsp-8),(w,rsp-16),..,(r,rsp-8)]

if [proc_table+256xpid+64+8xfd]: #7 accesses
return [(w,rsp-8),(w,rsp-16),..,(r,proc_tbl+256xpid+64+8xfd)
yeu,(r,rsp-8)1
# Succesful create. 17 accesses
return [(w,rsp-8),(w,rsp-16),..,(r,proc_tbl+256xpid+64+8xfd),..,
(r,file_tb1+40xfn+8), (w, file_tb1+40%fn), (w,file_tbl+40%fn+16)
.+, (w,proc_tb1+256%pid+64+8xfd),.., (r,rsp-8)]
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CFAR Distillate: Data Cache

dat
Pus returns an ordered sequence
of data memory accesses Qqata

Each memory access is a tuple
<type,addr>

def sys_create_dcache(fd, fn, type, value, omodc):

# State: pid, proc_tbl, file_tbl

if type == FD_NONE: #6 accesses
return [(w,rsp-8),(w,rsp-16),..,(r,rsp-8)]

if [proc=table+256*pid+64+8*fd]: #7 accesses
return [(w,rsp-8),(w,rsp-16),..,(r,proc_tbl+256xpid+64+8xfd)
yee,(r,rsp-8)1

# Succesful create. 17 accesses

return [(w,rsp-8),(w,rsp-16),..,(r,proc_tbl+256xpid+64+8xfd),..,
(r,file_tb1+40xfn+8), (w, file_tb1+40%fn), (w,file_tbl+40%fn+16)
.+, (w,proc_tb1+256%pid+64+8xfd),.., (r,rsp-8)]
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CFAR Distillate: Data Cache

type can be read (r), write (w),
or read-modify-write (rmw)

addr is asymbolic function of |,S

def sys_create_dcache(fd, fn, type, value, omodc):
# State: pid, proc_tbl, file_tbl

if type == FD_NONE: #6 accesses
return [(w,rsp-8),(w,rsp-16),..,(r,rsp-8)]

if [proc=table+256*pid+64+8*fd]: #7 accesses

return [(w,rsp-8),(w,rsp-16),..,(r,proc_tbl+256%pid+64+8xfd)
yee,(r,rsp-8)1

]

# Succesful create. 17 accesses
return [(w,rsp-8),(w,rsp-16),..,(r,proc_tbl+256xpid+64+8xfd),..,

(r,file_tb1+40xfn+8), (w, file_tb1+40xfn), (w,file_tb1+40%fn+16)

.+, (w,proc_tb1+256%pid+64+8xfd),.., (r,rsp-8)]
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CFAR Distillate: Data Cache

def sys_create_dcache(fd, fn, type, value, omodc):
# State: pid, proc_tbl, file_tbl

. if type == FD_NONE: #6 accesses
type can be read (r)’ write (W)’ return [(w, rsp-8),(w,rsp-16),..,(r,rsp-8)]

or read-modify-write (rmw)
if [proc=table+256*pid+64+8*fd]: #7 accesses
return [(w,rsp-8),(w,rsp-16),..,(r,proc_tb1+256%pid+64+8xfd)
[ yeu,(r,rsp-8)1 ]

addr is asymbolic function of |,S

# Succesful create. 17 accesses

return [(w,rsp-8),(w,rsp-16),..,(r,proc_tbl+256xpid+64+8xfd),..,
(r,file_tb1+40xfn+8), (w, file_tb1+40xfn), (w,file_tb1+40%fn+16)
.+, (w,proc_tb1+256%pid+64+8xfd),.., (r,rsp-8)]

Symbolic representation enables distillate to replicate P's memory accesses
irrespective of the concrete values of input/state and address space randomization .-




CFAR Distillate: Instruction Cache

The i-cache distillate is also a
program PIsir with the
same arguments as P

instr
Puiss returns an ordered
sequence of instr
accesses Qinstr

1 def sys_create_icache(fd, fn, ftype, value, omode):
2 # State: pid, proc_tbl, file_tbl

3 # sys_create abbreviated as s

iy

5 if ftype == FD_NONE: # 10 instructions

6 return [(r,s),..,(r,s+168),..,(r,s+176)1]

7

8 # Error paths elided for presentation clarity

9 ...

10

11 # Succesful create. 45 instructions

12 return [(r,s),(r,s+8),..,(r,s+160),(r,s+168),(r,s+176) ]




CFAR Distillate: Instruction Cache

1 def sys_create_icache(fd, fn, ftype, value, omode):
Instr addresses are offsets 2 # State: pid, proc_tbl, file_tbl
. 3 # sys_create abbreviated as s
relative to the address of 2
. . . 5 if ftype == FD_NONE: # 10 instructions
the first instruction of 6 return [(r,s),..,(r,s+168),..,(r,s+176)]
. . . . 7
COﬂtaInlﬂg fUﬂCtIOﬂ in P 8 # Error paths elided for presentation clarity
9 ...
10
11 # Succesful create. 45 instructions
12 return [(r,s),(r,s+8),..,(r,s+160),(r,s+168),(r,s+176) ]

CFAR'’s i-cache distillate will produce the precise sequence of
instructions executed by P irrespective of where the code is loaded




CFAR Distillates: Limitations

e Discard all timing information
o Cannot reason about latency
o Cannot reason about timeliness of prefetch operations

e Does not provide details about speculative memory accesses
o Hidden by the hardware

20
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CFAR Distillation: Step 1

Program
Source

Path

path constraints,
symbolic addresses

\ 4

enumeration |

n
»

concrete
inputs

e Analyze source to enumerate paths through the program
o Tradeoff between completeness, scalability, and human effort

e CFAR currently provides three types of analysis

o Automated symbolic execution: poor scalability

o Guided symbolic execution: requires human effort
o Concolic execution (WIP): incomplete
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CFAR Distillation: Step 2

path constraints,

symbolic addresses

Program X Path
Source enumeration |
concrete exec
inputs trace
Binary
| Binary
replay
(2]

Replay binary to obtain precise mem. access trace for each path



Program
Source

CFAR Distillation: Step 3

\ 4

Path

path constraints,
symbolic addresses

enumeration |

Binary

Collate execution trace and symbolic addresses per path
Synthesize execution tree containing all paths using path constraints

concrete execC
inputs trace

| Binary
replay
(2]

Exec. tree
synthesis
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Program
Source

CFAR Distillation: Step 4

path constraints,

Path symbolic addresses

Exec. tree Code
—p|

\ 4

enumeration | synthesis synthesis

A

Distillate

concrete execC
inputs trace

Binary

| Binary
replay
(2]

Translate execution tree into Python program for readability

25
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CFAR: Projectors

e User-defined functions that compute different cache-usage properties
o Input: Python list containing symbolic memory accesses
o Output: Answer to question about cache usage

e Forexample:
o len(list) returns number of memory accesses
o len(set([x.addr//64 for x in list])) returns unique cache lines touched

28



CFAR-Provided Projectors

e CFAR comes with three projectors that answer FAQs about cache usage
o Pscae: hOw cache usage scales as a function of workload
o Ppm: cache model to study hit and miss profile
0 Peryptor identifying secret-dependent branches, memory accesses

29



CFAR-Provided Projectors

e CFAR comes with three projectors that answer FAQs about cache usage
o Pscaler how cache usage scales as a function of workload
o Ppm: cache model to study hit and miss profile
0 Peryptor identifying secret-dependent branches, memory accesses

e Projectors are easy to write
O Pscale @aNd Perypro are both <100 lines of Python
o The cache modelin Py, is largely taken from gem5

Projectors directly operate on lists, are agnostic to how
the program being analyzed produced the list

30



Example Projector: P,

e Given alist of addresses, and a symbol of interest, compute number of accessed cache
lines that will change if the value of the symbol changes
o E.g., Pscale ([500, x+16, x+72], ‘X’) should return 2

e P.. e under the covers: 3 step process
o Query Z3 to compute list of addresses that may change if x changes
o Compute concrete values of x for which the change will take place
o Compute difference in the set of concrete cache lines touched for above values

31



CFAR Projectors: Limitations

e Analyze each pathinisolation
o Feasible for projectors to analyze >1list at a time, but CFAR does not support this yet

e Assume program is not preempted during execution
o Infeasible to analyze all possible concurrently-running programs

32
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CFAR: Evaluation

e Programs analyzed:
o Fast path of TCP ingress, egress from Linux v6.5 and v6.8

o Also analyzed fast path of a kernel-bypass stack, IwlP stack
o 2 open-source hash table implementations

o 51syscalls from Hyperkernel
o 7 algorithms from OpenSSL 3.0

e Eval questions: Are CFAR-extracted distillates
o Accurate?
o Useful?

34



Accuracy of CFAR’s Distillate

Manually wrote test-cases that cover ~50% of paths for each program

Measured number, addresses of
o Executed instructions
o Executed data memory accesses

Compared to values predicted by distillate
Observed ZERO error

CFAR'’s distillate is accurate and holds irrespective of
concrete values of input/state and address space randomization
35




How Does Cache Usage Scale?

e Used CFAR to analyze fast path of 4 TCP stacks:
o Linux before (v6.5) and after (v6.8) recent patch, IX (KB), and IwlIP stack
e Predicted number of connections at which each would suffer consistent LLC misses

36



How Does Cache Usage Scale?

Used CFAR to analyze fast path of 4 TCP stacks:
o Linux before (v6.5) and after (v6.8) recent patch, IX (KB), and IwlIP stack
Predicted number of connections at which each would suffer consistent LLC misses

Linux v6.5 Linux v6.8 —+—KB stack ——IwlIP stack
I T
| | | |
-1 1 1 1 1
o .
7 | | 176K '91K
I I I I
-1 1 1 | 1
| | | |
| | | |
I 1 1 I II 1 I
0 25K 50K 75K 100K 125K

Number of connections
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How Does Cache Usage Scale?

e Used CFAR to analyze fast path of 4 TCP stacks:
o Linux before (v6.5) and after (v6.8) recent patch, IX (KB), and IwlIP stack
e Predicted number of connections at which each would suffer consistent LLC misses

——Linux v6.5 Linux v6.8 ——KB stack ——IwlIP stack
1000 ] ] i ]
) i | i i
£ 750 ~ ! : | l
'S I i i i
8 500 :18K ! :76K :91K
£ 250 - | | L
— 1 1
O 1 1 1 II ! 1
0 25K 50K 75K 100K 125K

Number of connections

[ CFAR can provide developers with clarity into cache usage even for third-party code ]
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Identifying Inefficient Access Patterns

® |dentified a case of false sharing in the IX stack using a simple 5 line projector

1 def pcb_offset (seq):

2 pcb = sympy.Symbol ('pcb')

3 # if address is an offset from only the PCB,

4 # return (address—PCB) /64

5 return [(x-pcb)//64 for x in seq if sympy.
is_constant (x-pcb) ]
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Identifying Inefficient Access Patterns

® |dentified a case of false sharing in the IX stack using a simple 5 line projector

1 def pcb_offset (seq):

2 pcb = sympy.Symbol ('pcb')

3 # if address is an offset from only the PCB,

4 # return (address—PCB) /64

5 return [ (x-pcb)//64 for x in seq if sympy.
is_constant (x-pcb) ]

# Send fast path: KB stack
# No access to 5th cache line
[2131311111313131311121312'211'1111110101211'212'11012]

# Receive fast path: KB stack
# Only one access to 5th cache line
1yl 0;0;2;2,3808101:2;2;3]
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Identifying Inefficient Access Patterns

@® Re-organized struct tcp_pcb for cache efficiency (confirmed by projector)

—=—KB stack ——KB stack (fixed)

600

NS
(@) o
() o

1 1

Latency (ns)

o
-

50k 100k 150k 200k
Number of connections

o

without elaborate benchmarking

[ CFAR enables developers to identify inefficient access patterns }
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ldentifying Cache-Based Leakages

e |Inspected 7 algorithms from OpenSSL 3.0 with Pgrypio
o AES, SHA, MD5, Poly1305, Chacha, echde, RSA

e Reproduced known cache-leakage vulnerability in RSA (OpenSSL 1.0)

e Found a new constant-time violation in AES, latent since OpenSSL 1.1
o Acknowledged by maintainers, in final stages of being merged

Since the memory distillate is precise, developers can use CFAR
to analyze more than just performance properties of code
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Constant-Time Violation in AES

1 def ossl_cipher_unpadblock_icache(buffer, buffer_length, block_size):

43



Constant-Time Violation in AES

def ossl_cipher_unpadblock_icache(buffer, buffer_length, block_size):

Projection showing
constant-time violation

if buffer.padding_length == 0:
return 44
else:
if buffer.padding_length > block_size:
return 48
else:
return 57 + 19%buffer.padding_length

O 00 NN O U & W N =
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Constant-Time Violation in AES

def ossl_cipher_unpadblock_icache(buffer, buffer_length, block_size):

Projection showing
constant-time violation

if buffer.padding_length == 0:

return 44
else:
if buffer.padding_length > block_size:

return 48
else:
return 57 + 19%buffer.padding_length

W 00 NN O U b W N
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Constant-Time Violation in AES

Projection showing
constant-time violation

Projection after
fix

W 00 NN O U b W N

def ossl_cipher_unpadblock_icache(buffer, buffer_length, block_size):

if buffer.padding_length == 0:
return 44

else:

if buffer.padding_length > block_size:

return 48
else:

return 57 + 19%buffer.padding_length

def ossl_cipher_unpadblock_icache(buffer, buffer_length, block_size):

return 2985
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Cache Footprint AnalyzeR (CFAR)

e Key idea: abstraction of memory distillate
o Captures details relevant to how code accesses mem, discards all else
o Can be projected into answers to diverse questions about cache usage

— > Q
Code » Distillate
- o)
Distillation Projection
[Slsrie (=]
[l e

https://dslab.epfl.ch/research/perf
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Loop Summarization in CFAR

@® Does not impact precision, only readability
@® Best-effort process

@® Uses templates for “common” loop access patterns [DMON OSDI'21]
O 2 array-based, 2 pointer-chasing patterns

@® Requirements:
O Loop body does not branch on value of iteration counter
O Maximum of 2 termination conditions for the loop.
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Loop Summarization in CFAR: Example

def memcmp_dcache(s1,s2,1len):

1
2
3 if Exists(i,And(0<=i<len,[s1+i]!=[s2+i],

4 ForAll(j, Implies(0<=j<i),[s1+jl==[s2+3j]1))):
5

6

7

return ForAll(k, Implies(@0<=k<=i),[(r,s1+k),(r,s2+k)])
return ForAll(k, Implies(0<=k<=len),[(r,s1+k),(r,s2+k)])
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