
Automatically Reasoning About the
Cache Usage of Network Stacks

Rishabh Iyer Katerina Argyraki George Candea

Problem Statement

● Help developers answer
○ Frequently-asked, what-if questions about cache usage of code
○ Particularly for unseen and untested workloads

● Example questions
○ How does cache usage scale with the number of connections?
○ What is my code’s cache hit/miss profile?

2

Motivating Example

● Alice wants to build a fast, in-memory key-value store
○ Hash table + network stack (off-the-shelf)
○ Throughput bottlenecked by L3 cache misses

● Alice needs to answer questions such as
○ What workloads lead to consistent cache misses?
○ How much of the cache does each component use?

3

Existing Tools are Insufficient!

● Developers rely on profilers and HW counters today

● No predictive capability, insights limited to the concrete inputs used

● Developers must manually reverse engineer answers to key questions
○ Tedious and error-prone, particularly for third-party code

Recent patch showed how Linux’s TCP stack had been incurring
a bloated cache footprint, leading to slowdowns of up to 45%

4

A Lack Of Abstraction For Cache Usage

● Alice needs visibility into how the code processes an abstract/symbolic workload

● Only way to obtain this information today is to read/profile the implementation

Can there exist an abstract/symbolic representation that
helps developers efficiently reason about cache usage?

5

Memory Distillates

● Representation that retains all information relevant to how the code accesses memory
○ Discards everything else

● Given the same inputs as the code, the distillate
○ Produces an identical trace of memory accesses
○ But does not produce correct outputs

Memory Trace
Functional Outputs

Code Memory Trace
Functional Outputs

Distillate

Input

6

Cache Footprint AnalyzeR (CFAR)

● Answers questions about cache usage using two-step workflow
○ Distillation: Extracts distillate using automated program analysis
○ Projection: Devs query distillate to answer specific questions

● Since distillate is precise, CFAR can answer diverse questions about cache usage

DistillateCode

Distillation Projection

21

7

Memory distillates provide a simple yet precise
abstraction for reasoning about cache usage

8

Projection

CFAR Overview

DistillateProgram
Source Distillation

Answer1

Answer2

…

9

Projection

CFAR Overview

DistillateProgram
Source Distillation

Answer1

Answer2

…

10

11

sys_create() from Hyperkernel

Example Syscall

12

sys_create() from Hyperkernel

Kernel state: proc_table, filetable
Implemented as arrays

Input-dependent access pattern

Example Syscall

CFAR Distillate: Data Cache

13

CFAR Distillate: Data Cache

takes the same inputs as P (I)
and maintains the same state (S)

The data cache distillate
of a program P is a program

14

returns an ordered sequence
of data memory accesses Ωdata

Each memory access is a tuple
<type,addr>

CFAR Distillate: Data Cache

15

type can be read (r), write (w),
or read-modify-write (rmw)

addr is a symbolic function of I,S

CFAR Distillate: Data Cache

16

CFAR Distillate: Data Cache

Symbolic representation enables distillate to replicate P’s memory accesses
irrespective of the concrete values of input/state and address space randomization

17

type can be read (r), write (w),
or read-modify-write (rmw)

addr is a symbolic function of I,S

The i-cache distillate is also a
program with the
same arguments as P

returns an ordered
sequence of instr
accesses Ω instr

CFAR Distillate: Instruction Cache

Instr addresses are offsets
relative to the address of
the first instruction of
containing function in P

CFAR Distillate: Instruction Cache

CFAR’s i-cache distillate will produce the precise sequence of
instructions executed by P irrespective of where the code is loaded

CFAR Distillates: Limitations

● Discard all timing information
○ Cannot reason about latency
○ Cannot reason about timeliness of prefetch operations

● Does not provide details about speculative memory accesses
○ Hidden by the hardware

20

Projection

CFAR Overview

DistillateProgram
Source Distillation

Answer1

Answer2

…

21

CFAR Distillation: Step 1

Program
Source

Path
enumeration

1

path constraints,
symbolic addresses

concrete
inputs

22

● Analyze source to enumerate paths through the program
○ Tradeoff between completeness, scalability, and human effort

● CFAR currently provides three types of analysis
○ Automated symbolic execution: poor scalability
○ Guided symbolic execution: requires human effort
○ Concolic execution (WIP): incomplete

CFAR Distillation: Step 2

Program
Source

Path
enumeration

Binary
replay

1

path constraints,
symbolic addresses

concrete
inputs

Binary

exec
trace

23

2

Replay binary to obtain precise mem. access trace for each path

CFAR Distillation: Step 3

Program
Source

Path
enumeration

Exec. tree
synthesis

Binary
replay

1

path constraints,
symbolic addresses

concrete
inputs

Binary

exec
trace

24

3

2

Collate execution trace and symbolic addresses per path
Synthesize execution tree containing all paths using path constraints

CFAR Distillation: Step 4

DistillateProgram
Source

Path
enumeration

Exec. tree
synthesis

Code
synthesis

Binary
replay

1

path constraints,
symbolic addresses

concrete
inputs

Binary

exec
trace

Translate execution tree into Python program for readability
25

3 4

2

CFAR Overview

26

ProjectionDistillateProgram
Source

Automated
Program
Analysis

Answer1

Answer2

…

Distillation

CFAR: Projection

Program
Source Distillate

Automated
Program
Analysis

Answer1

Answer2

…

Projector1

Projector2

…

ProjectionDistillation

27

● User-defined functions that compute different cache-usage properties
○ Input: Python list containing symbolic memory accesses
○ Output: Answer to question about cache usage

● For example:
○ len(list) returns number of memory accesses
○ len(set([x.addr///64 for x in list])) returns unique cache lines touched

CFAR: Projectors

28

● CFAR comes with three projectors that answer FAQs about cache usage
○ Pscale: how cache usage scales as a function of workload
○ Ph/m: cache model to study hit and miss profile
○ Pcrypto: identifying secret-dependent branches, memory accesses

CFAR-Provided Projectors

29

● CFAR comes with three projectors that answer FAQs about cache usage
○ Pscale: how cache usage scales as a function of workload
○ Ph/m: cache model to study hit and miss profile
○ Pcrypto: identifying secret-dependent branches, memory accesses

● Projectors are easy to write
○ Pscale and Pcrypto are both < 100 lines of Python
○ The cache model in Ph/m is largely taken from gem5

CFAR-Provided Projectors

Projectors directly operate on lists, are agnostic to how
the program being analyzed produced the list

30

Example Projector: Pscale

31

● Given a list of addresses, and a symbol of interest, compute number of accessed cache
lines that will change if the value of the symbol changes
○ E.g., Pscale ([500, x+16, x+72], ‘x’) should return 2

● Pscale under the covers: 3 step process
○ Query Z3 to compute list of addresses that may change if x changes
○ Compute concrete values of x for which the change will take place
○ Compute difference in the set of concrete cache lines touched for above values

● Analyze each path in isolation
○ Feasible for projectors to analyze >1 list at a time, but CFAR does not support this yet

● Assume program is not preempted during execution
○ Infeasible to analyze all possible concurrently-running programs

CFAR Projectors: Limitations

32

CFAR: Projection

Program
Source Distillate

Automated
Program
Analysis

Answer1

Answer2

…

Projector1

Projector2

…

ProjectionDistillation

33

CFAR: Evaluation

● Programs analyzed:
○ Fast path of TCP ingress, egress from Linux v6.5 and v6.8

○ Also analyzed fast path of a kernel-bypass stack, lwIP stack
○ 2 open-source hash table implementations
○ 51 syscalls from Hyperkernel
○ 7 algorithms from OpenSSL 3.0

● Eval questions: Are CFAR-extracted distillates
○ Accurate?
○ Useful?

34

Accuracy of CFAR’s Distillate

● Manually wrote test-cases that cover ~50% of paths for each program

● Measured number, addresses of
○ Executed instructions
○ Executed data memory accesses

● Compared to values predicted by distillate

● Observed ZERO error

CFAR’s distillate is accurate and holds irrespective of
concrete values of input/state and address space randomization

35

How Does Cache Usage Scale?
● Used CFAR to analyze fast path of 4 TCP stacks:

○ Linux before (v6.5) and after (v6.8) recent patch, IX (KB), and lwIP stack
● Predicted number of connections at which each would suffer consistent LLC misses

36

How Does Cache Usage Scale?
● Used CFAR to analyze fast path of 4 TCP stacks:

○ Linux before (v6.5) and after (v6.8) recent patch, IX (KB), and lwIP stack
● Predicted number of connections at which each would suffer consistent LLC misses

� ��. ��. ��. ���. ���.
1XPEHU�RI�FRQQHFWLRQV

�

���

���

���

����
/D
WH
QF
\�
�Q
V�

��. ��. ��. ��.

/LQX[�Y��� /LQX[�Y��� .%�VWDFN OZ,3�VWDFN

� ��. ��. ��. ���. ���.
1XPEHU�RI�FRQQHFWLRQV

�

���

���

���

����

/D
WH
QF
\�
�Q
V�

��. ��. ��. ��.

37

How Does Cache Usage Scale?
● Used CFAR to analyze fast path of 4 TCP stacks:

○ Linux before (v6.5) and after (v6.8) recent patch, IX (KB), and lwIP stack
● Predicted number of connections at which each would suffer consistent LLC misses

� ��. ��. ��. ���. ���.
1XPEHU�RI�FRQQHFWLRQV

�

���

���

���

����
/D
WH
QF
\�
�Q
V�

��. ��. ��. ��.

/LQX[�Y��� /LQX[�Y��� .%�VWDFN OZ,3�VWDFN

� ��. ��. ��. ���. ���.
1XPEHU�RI�FRQQHFWLRQV

�

���

���

���

����

/D
WH
QF
\�
�Q
V�

��. ��. ��. ��.

CFAR can provide developers with clarity into cache usage even for third-party code
38

Identifying Inefficient Access Patterns

● Identified a case of false sharing in the IX stack using a simple 5 line projector

39

Identifying Inefficient Access Patterns

● Identified a case of false sharing in the IX stack using a simple 5 line projector

40

Identifying Inefficient Access Patterns

CFAR enables developers to identify inefficient access patterns
without elaborate benchmarking

● Re-organized struct tcp_pcb for cache efficiency (confirmed by projector)

41

Identifying Cache-Based Leakages

● Inspected 7 algorithms from OpenSSL 3.0 with Pcrypto
○ AES, SHA, MD5, Poly1305, Chacha, echde, RSA

● Reproduced known cache-leakage vulnerability in RSA (OpenSSL 1.0)

● Found a new constant-time violation in AES, latent since OpenSSL 1.1
○ Acknowledged by maintainers, in final stages of being merged

42

Since the memory distillate is precise, developers can use CFAR
to analyze more than just performance properties of code

Constant-Time Violation in AES

43

Constant-Time Violation in AES

Projection showing
constant-time violation

44

Constant-Time Violation in AES

Projection showing
constant-time violation

45

Constant-Time Violation in AES

Projection showing
constant-time violation

Projection after
fix

46

Cache Footprint AnalyzeR (CFAR)

● Key idea: abstraction of memory distillate
○ Captures details relevant to how code accesses mem, discards all else
○ Can be projected into answers to diverse questions about cache usage

https://dslab.epfl.ch/research/perf 47

DistillateCode

Distillation Projection

Backup Slides

48

Loop Summarization in CFAR

● Does not impact precision, only readability

● Best-effort process

● Uses templates for “common” loop access patterns [DMON OSDI’21]
○ 2 array-based, 2 pointer-chasing patterns

● Requirements:
○ Loop body does not branch on value of iteration counter
○ Maximum of 2 termination conditions for the loop.

49

Loop Summarization in CFAR: Example

50

