
SMC-ERM: A fast remote memory communication
method based on SMC socket

Dust Li/D. Wythe
dust.li@linux.alibaba.com/alibuda@linux.alibaba.com

2024/09/18

Agenda

01. Problems statement

02. Design

03. Preliminary results

04. Status + Future work

05. Q & A

01. Problems statement

What is SMC-R ?

SMC is an effort to boost the performance of TCP applications in datacenter

without any code change

1. Provide compatible APIs with TCP socket

2. use RDMA for data transmission at the lower level.

3. Implement in the kernel, works with static linked apps. Like golang

TCP

Application

SMC-R

Data flow：RDMA

IP

netdev

Sockets

RDMA device ethernet device

TCP

Application

SMC-R

IP

netdev

Sockets

ethernet device

Control flow: TCP connection

RDMA device

Ways to use SMC-R

1. using AF_SMC or IPPROTO_SMC explicitly in application

socket(AF_INET, SOCK_STREAM, 0) à
socket(AF_SMC, SOCK_STREAM, 0)
socket(AF_INET, SOCK_STREAM, IPPROTO_SMC)

2. LD_PRELOAD: add a smc_run prefix before application, smc_run netperf

3. eBPF dynamic replacement: same like mptcp

- filter by addr/port/Process Name etc.

TCP

Application

SMC-R

Data flow：RDMA

IP

netdev

Sockets

RDMA device ethernet device

TCP

Application

SMC-R

IP

netdev

Sockets

ethernet device

Control flow: TCP connection

RDMA device

Benefits & Drawbacks

benefits

• Network performance can be improved without any code change for

many applications. Like redis/Kafka

drawbacks

• Doesn’t support zerocopy currently

TCP

Application

SMC-R

Data flow：RDMA

IP

netdev

Sockets

RDMA device ethernet device

TCP

Application

SMC-R

IP

netdev

Sockets

ethernet device

Control flow: TCP connection

RDMA device

SMC-R Control path

1. A TCP experimental option to indicate if both side support SMC

2. An extra SMC handshake after TCP 3-way handshake to prepare SMC

connection resources

3. Fallback to the TCP connection if anything goes wrong

client Server
SYN(tcp option: exp-e2d4)

SYN ACK(tcp option: exp-e2d4)
TCP 3way
handshake

ACK

SMC CLC
Handshake

CLC PROPOSAL

Create QP
Alloc sndbuf/RMB
QP state: INIT

CLC CONFIRM

CLC CONFIRM

Create QP
Alloc sndbuf/RMB
QP: RTR

QP state: RTS

1. Data is copied to SMC kernel sendbuf with sendmsg() syscall

2. Data is moved by RDMA device using RDMA Write

3. Sender notifies the receiver to update its cursor

4. Data is copied to user space from RMB(Receive Memory Buffer) with

recvmsg() syscall

5. Receiver notifies the sender to update its sndbuf cursor

SMC-R Data path

• For 1 data transfer, 2 CPU memory copies, 1 RDMA copy

• Memory copies limit the throughput

1. Data is copied to SMC kernel sendbuf with sendmsg() syscall

2. Data is moved by RDMA device using RDMA Write

3. Sender notifies the receiver to update its cursor

4. Data is copied to user space from RMB(Receive Memory Buffer) with

recvmsg() syscall

5. Receiver notifies the sender to update its sndbuf cursor

Problems with SMC-R Data path

SMC-R zerocopy

• Communication is all about moving memory

• Direct moving data from Sender application to Receiver application

• SMC-ERM(Extended Remote Memory): Direct memory access on top of SMC.

Why Extend APIs ?

Difference with TCP zerocopy:

1. Memory Pin is necessary for RDMA

2. TCP tx & rx zerocopy are seperated

For RDMA, it’s easy to support zero copy:

1. Received data goes to specific RC QP directly with no header

2. RDMA read/write can access any registered memory, both local and remote

Can we reuse the existing Zerocopy APIs ？

ret = send(fd, buf, sizeof(buf), MSG_ZEROCOPY);

res = getsockopt(fd, IPPROTO_TCP, TCP_ZEROCOPY_RECEIVE, &zc, &zc_len);

02. Design

How it works
1.user memory is directly registered to RDMA device

2.provide memory directly accessible to the peer socket

3.Meta data is stored in cmsg, user call sendmsg()/recvmsg()

Goal
1.High Performance: Competitive performance over user space RDMA

2.Easy to use: simple datapath APIs

SMC-ERM Design

Control path
• handshake

• memory register & unregister

• key exchange & MR(Memory Region) management

SMC-ERM Design

Datapath
• send

• recv

Two set of extended APIs
• control path: setsockopt(REG_MR/DEREG_MR)

• data path : sendmsg(cmsg)/recvmsg(cmsg)

SMC-R Control path

Handshake to check if both side support ERM

client Server
SYN(tcp option: exp-e2d4)

SYN ACK(tcp option: exp-e2d4)
TCP 3way
handshake

ACK

SMC CLC
Handshake

CLC PROPOSAL (Support ERM)

Create QP
Alloc sndbuf/RMB
QP state: INIT

CLC CONFIRM (Support ERM)

CLC CONFIRM

Create QP
Alloc sndbuf/RMB
QP: RTR

QP state: RTS

ERM Control path API

struct smc_erm_cmd_reg_mr regmr = {
.type = SMC_ERM_CMD_REG_MR,
.addr = buff,
.len = buff_size,
.access_flags = SMC_ACCESS_LOCAL_WRITE |

SMC_ACCESS_REMOTE_READ |
SMC_ACCESS_REMOTE_WRITE,

};
memid = setsockopt(sock, SOL_SMC, SMC_ERM_CMD, ®mr, sizeof(regmr));

struct smc_erm_cmd_dereg_mr deregmr = {
.type = SMC_ERM_CMD_DEREG_MR,
.memid = memid,

};
ret = setsockopt(conn->sock, SOL_SMC, SMC_ERM_CMD, &deregmr, sizeof(deregmr));

DEREG_MR

REG_MR

MR management

Memory Registration
• Same as RDMA user memory

registration

MR management
1. MR managed in kernel space

2. MR is synchronized to Peer if it was set to remote READ/WRITE

REG_MR Flow
1. Receiver register MR with REMOTE_READ/WRITE set

2. Register the memory locally

3. ERM will sync the new entry to the Sender

4. Sender update it’s “Remote MR table”, so the sender can do Remote

R/W using this memid

ERM data path API

struct smc_erm_cmd_copy copycmd = {
.hdr.type = SMC_ERM_CMD_COPY,
.hdr.flags = SMC_ERM_CMD_FLAG_REMOTE_COMPL,

.len = msg_size,

.src_idx = local_memid,

.src_offset = 0,

.dst_idx = remote_memid,

.dst_offset = 0,
};

struct msghdr msgh = {
.msg_control = u.buf,
.msgh.msg_controllen = sizeof(u.buf),

};
struct cmsghdr *cmsg = CMSG_FIRSTHDR(&msgh);
cmsg->cmsg_level = SOL_SMC;

cmsg->cmsg_type = SMC_ERM_CMD;
cmsg->cmsg_len = CMSG_LEN(sizeof(struct smc_erm_cmd_copy));
memcpy(CMSG_DATA(cmsg), ©cmd, sizeof(copycmd));

sendmsg(conn->sock, &msgh, 0);

sendmsg

ERM data path API

ret = recvmsg(conn->sock, &msgh, MSG_ERRQUEUE);

for (cmsg = CMSG_FIRSTHDR(&msgh); cmsg != NULL; cmsg = CMSG_NXTHDR(&msgh, cmsg)) {

if (cmsg->cmsg_level != SOL_SMC || cmsg->cmsg_type != SMC_ERM_CMD_COMPL)
continue;

struct smc_rmem_compl_event *ev = (struct smc_rmem_compl_event *)CMSG_DATA(cmsg);
switch (ev->event) {
case SMC_ERM_CMD_COPY:

data = ev->copy.addr;
recv_len = ev->copy.len;
break;

default:
error("un insterested event: %d\n", ev->event);
break;

}
}

recvmsg

03. Preliminary results

Test setup and Performance

Hardware:

• CPU: Intel(R) Xeon(R) Platinum 8469C CPU @ 2.6GHz, SPR
• Memory: 2T(64GB*32), DDR5, 4800 MT/s
• NIC: Mellanox Bluefield 3, 200Gbps *2, with PCIe 5.0 x16

Topology:

• 2 VM’s running on the same host
• Both VM’s memory are on the same Numa Node
• Both VM’s CPU are in the same socket
• 2 VFs are on the same PF，each allocate to 1 VM

Performance

Throughput Test

• Data from sender to receiver only
• Both ERM and userspace RDMA (ib_write_bw) can saturate

200Gbps with 1 core

04. Status + Future work

• Still a POC, many code are hardcoded

• Handshake protocol support

• Complete the RFC and send to netdev

Status

Busypoll support

• Busypoll is important for extreme low latency

• SMC don’t support busypoll now

• Application can busypoll memory in userspace

• TCP busypoll may “do work for others”, same for SMC

Combine io-uring ？

• High performance zerocopy requires asynchronous API

• io-uring is asynchronous by nature

Future work

05. Q & A

Open questions

Where to put the cmsg ? errqueue or recv queue ?
• errqueue like MSG_ZEROCOPY, add extra complexity to userspace
• recv queue without IOV is a bit wired

