


Netdev CI
What is being validated. What Network subsystems can do.

Matthieu Baerts (NGI0)
@matttbe@fosstodon.org

https://fosstodon.org/@matttbe


NIPA - Netdev Infrastructure for Patch Automation

Plan:

● What does it do? Why? What is important to know?

● How to extend its coverage?

● How to have this in other (sub)subsystems?

● What is missing?



What does it do?
Why?

What is important to know?



What does NIPA do?

It tests stuff…



What does NIPA do?

It tests stuff… a bit of history first.

• Before NIPA: patches were (hopefully) tested elsewhere:
• Private tests: builds, static analytic, functional tests

• Some CI validating different trees: LKP/0-day, Syzbot, LKFT, etc.

• Late feedback

Dec ‘23 Jan ‘24Oct ‘20



What does NIPA do?

It tests stuff… a bit of history first.

• In 2020: Jakub brought NIPA to life!
• Static analytic tests:

• Basic patch checks, build test with GCC, CLang

• Executed patch-by-patch

• Results are publicly available
Oct ‘20 Jan ‘24Dec ‘23



What does NIPA do?

It tests stuff… a bit of history first.

• In December 2023: Functional tests are appearing
• Coccicheck

• Documentation building

• KUnit

• Report back to patchwork
Dec ‘23 Jan ‘24Oct ‘20



What does NIPA do?

It tests stuff… a bit of history first.

• In January 2024: Functional tests are definitively there
• KSelftests: VMs running networking selftests

• Web pages to present results on netdev.bots.linux.dev

• Results still published on Patchwork ; logs are still available

Dec ‘23 Jan ‘24Oct ‘20



What is NIPA?

What it is:

• A bunch of scripts (Python/Bash)

• Tracking patches from netdev

• Machines to build / launch tests

• Web UI pages



What is NIPA?

What it is:

• A bunch of scripts (Python/Bash)

• Tracking patches from netdev

• Machines to build / launch tests

• Web UI pages

What it is not:

• A service to validate non-locally 

tested patches

• General testing purpose

• Hosting tests



Why is it needed?

• To help maintainers and reviewers:
• Quick automated feedback

• To reduce the feedback loop, increase trust:
• Reduce issues seen after merging: tracking, pinging, reverting, ...

• To have some controls:
• What has been tested, how, integration with Patchwork, etc.



Functional tests: current status

• 750+ tests not counting subtests

• 8 tests are ignored, mostly when using a debug kconfig

• ~2h to run get all results

• 26 VMs running tests in parallel

• /!\ Not coverring all cases /!\



How does it work?

• Monitor patches from Patchwork (web service for maintainers)

• Add new patches to the build queue
• Build + small tests

• Send results on Patchwork

• ETA: 1 to 12h (or more when CLang builds get stuck)

• Every 3h: periodic tests



Periodic tests: every 3 hours: branch

• Create a new branch:
• On top of net-next, merged with 

-net if possible
• With all patches that passed the 

build and are still in review
• Why?

• Tests can be long, and be retried
• To cope with future HW tests



Periodic tests: every 3 hours: tests

• Functional tests in parallel:
• KUnit, KSelftests, BPF selftests

• With/Without debug kconfig

• Multiple VMs in parallel



Periodic tests: every 3 hours: tests

• Report results:
• For the maintainers & reviewers:

• Not every failures are problematic

• People might send too often, fixing 

unimportant issues.

• Visible on Patchwork and WebUI



Web UI: Patchwork

https://patchwork.kernel.org/project/netdevbpf/list/

https://patchwork.kernel.org/project/netdevbpf/list/


Web UI: Contest

https://netdev.bots.linux.dev/contest.html

https://netdev.bots.linux.dev/contest.html


Web UI: Flakes

https://netdev.bots.linux.dev/flakes.html

https://netdev.bots.linux.dev/flakes.html


Web UI: Status

https://netdev.bots.linux.dev/status.html

https://netdev.bots.linux.dev/status.html


Web UI

• Oriented for maintainers and reviewers

• Developers can check: which tests need to be improved?

• Series’ author can prepare an eventual future version:
• But again: test locally first!



Reproduce issues

• Static analytic issues: should be clear and easy to reproduce

• Functional tests: check NIPA’s wiki

• virtme-ng can help to build and launch a VM

• Tests can then be launched manually from the VM

• Some tools might be needed: IPRoute2, NFTables, etc.

• Maybe there will be a container with all required tools?
https://github.com/linux-netdev/nipa/wiki/

https://github.com/linux-netdev/nipa/wiki/How-to-run-netdev-selftests-CI-style
https://github.com/linux-netdev/nipa/wiki/


How to extend its coverage?



Extensions

• Increase code coverage with new tests:
• KUnit: lightweight unit testing framework

• KSelftests: small tests to exercise individual kernel code paths

• A new remote: for special infrastructures:
• Hardware

• Complex or external dependences

https://kunit.dev
https://docs.kernel.org/dev-tools/kselftest.html
https://github.com/linux-netdev/nipa/wiki/Setting-up-a-runner-for-a-Supported-NIC-driver


Extensions: KSelftests

• Simple programs in userspace

• Return code: PASS, SKIP, FAIL, XPASS, XFAIL

• Helpers in C, Bash and Python

• TAP format can be used to report subtests

• Should run on any kernel versions…



Extensions: KSelftests: run on any kernel!

• “Running tests from mainline offers the best coverage.”

• “To regression test a bug, we should be able to run that test on 

an older kernel.”

• Some CIs are doing that when testing stable kernels:
• Selftests with many subtests can be marked as failed if one 

cannot work on stable kernels
https://docs.kernel.org/dev-tools/kselftest.html

https://docs.kernel.org/dev-tools/kselftest.html


Extensions: KSelftests: run on any kernel?

• Feasible with Networking tests?

• New syscall, check error: OK

• New feature, still using socket API: NOK
• MPTCP in v5.6: only one path

• How to check if the kernel supports multiple paths, >5.6

• Counters? KAllSyms? Kernel version? (RHEL case)



Extensions: new remote
• HW specific

• External tests

suite



KSelftests Drivers

• New requirement from v6.12 for “supported” drivers

• Using a remote runner attached to HW:
• Helpers for single or dual hosts (ssh) / interfaces (netns)

• Why:
• Improve feature delivery

• user and vendor participation

https://lore.kernel.org/all/20240425114200.3effe773@kernel.org/
https://github.com/linux-netdev/nipa/wiki/Setting-up-a-runner-for-a-Supported-NIC-driver


KSelftests Drivers: Why?

• Requirements / specs defined as tests, reflecting use-cases

• Increase compatibility, share effort, avoid regressions

• netdevsim can help for prototyping

• Tests can be sent / enabled with implementation

• Make upstream-first development model more feasible



How to have this in other (sub)subsystems?



Replicate this in other subsystems

Patches CI Results

● Logs / Artifacts
● Matrix to see flakes
● Patchwork

● Build + tests● Patches in Git● Monitor ML/Patchwork



Replicate this in other subsystems

Patches CI Results

● Logs / Artifacts
● Matrix to see flakes
● Patchwork

● Build + tests● Patches in Git● Monitor ML / Patchwork

e.g. Patchew



Patches ⇒ Git: Patchew can help

https://patchew.org

https://patchew.org


Replicate this in other subsystems

Patches CI Results

● Logs / Artifacts
● Matrix to see flakes
● Patchwork

● Build + tests● Patches in Git● Monitor ML / Patchwork

e.g. GitHub Actions



CI: GitHub Actions can help



CI: requirements

• Service or dedicated servers, e.g. HW dependences
• Run the tests:

• Setup environment
• Build kernel + run in a VM or dedicated HW
• KVM support
• Build / git cache
• Catch errors: call trace, warning messages, kmemleak, etc.



CI: example

• Environment: containers can help
docker run (...) --privileged mptcp/mptcp-upstream-virtme-docker:latest

• VM: virtme-ng can help

• KVM support: Github Actions can support it → opt-in

• Cache: ccache can help

• Catching errors: shared resources?
https://github.com/multipath-tcp/mptcp-upstream-virtme-docker 

https://github.com/multipath-tcp/mptcp-upstream-virtme-docker
https://github.com/arighi/virtme-ng
https://github.com/multipath-tcp/mptcp-upstream-virtme-docker


Replicate this in other subsystems

Patches CI Results

● Logs / Artifacts
● Matrix to see flakes
● Patchwork

● Build + tests● Patches in Git● Monitor ML / Patchwork

GitHub Pages



Results: example

• Logs / Artifacts: usually easy

• Show the last results: TAP parsers or converters to JUnit, etc.

• Check regressions: home made solution published in HTML



Results: example



Interested by that for your subsystem?

• Contact me
• https://github.com/multipath-tcp/mptcp_net-next/actions

• https://github.com/multipath-tcp/mptcp-upstream-virtme-docker

https://github.com/multipath-tcp/mptcp_net-next/actions
https://github.com/multipath-tcp/mptcp-upstream-virtme-docker


What is missing in NIPA?
Any suggestions?



Matthieu Baerts (NGI0)
@matttbe@fosstodon.org



The Netdev CI has been checking patches sent to the Netdev mailing list for a couple of years now. Thanks to that, Netdev maintainers 
are able to easily check which patches are causing issues despite the high volume of patches that are shared every day. Until this year, 
the CI was limited to kernel builds, and various static checks, but the good thing is that all results were already available publicly. Kernel 
developers can then access the logs to understand what went wrong, without too much assistance from the maintainers.

In 2024, the Netdev CI has seen the introduction of functional tests by running many Network kernel selftests and unit tests. Even if 
some of these tests were certainly executed regularly by some, they are now automatically tested, and their results are available to all. 
This really helps Netdev maintainers and contributors to catch regressions early, and encourage everybody to have their new features 
and fixes covered by new test cases.

This talk will present how the Netdev CI is currently working, and the small details that are important to know. But it will also explain how 
it can be extended, e.g. to run some tests on real hardware to validate some drivers, to execute other specific tests that are not part of 
the kernel repo, tracking performance regressions in a dedicated environment, etc.

Another topic that will be mentioned is how Network subsystems, can have a similar service on their side. The MPTCP CI will be taken as 
an example, using GitHub Actions with KVM support to run various tests on development patches without having to maintain custom 
servers similar to what is in place with the Netdev CI.

Comments: My main goal here is to explain what is being done on the Netdev CI, how Netdev subsystems maintainers and contributors 
can extend it to cover more cases, and have a similar service on their side to pre-validate patches before upstreaming them to Netdev.

On a related topic, this talk can also initiate some discussions about kselftests that are supposed to support any previous kernel versions, 
and not only the kernel code they are attached to in the kernel repo. This seems hard to support for the Networking subsystem, and 
even harder to maintain. But if this is not supported, then CIs validating stable versions will stop reporting useful results.


