Energy Efficient Ethernet in the Linux Kernel

Oleksij Rempel – ore@pengutronix.de

my_self = kzalloc()

- Oleksij Rempel, Linux Kernel Hacker
- Expertise in: Medical, Industrial and Agricultural devices
- Addressing challenges: Limited CPU/bandwidth, power efficiency, diagnostic
- Prioritizing long-term sustainable, secure and Open Source Embedded Linux (mainline).

Reducing power consumption - EEE

- Energy Efficient Ethernet
- On some systems, EEE saves 0.2W per port
- One Watt Initiative reduce standby power under one watt.

Trouble shooting EEE

- Current state of EEE support in Linux kernel v6.10 is different. Some drivers do it properly. (Last talk was about 9.4:))
- Drivers or even HW doc may provide not enough or not proper information.
- Use oscilloscope!
- This talk is to inspire more kernel hackers to explore this functionality

State of EEE Linux Kernel implementation

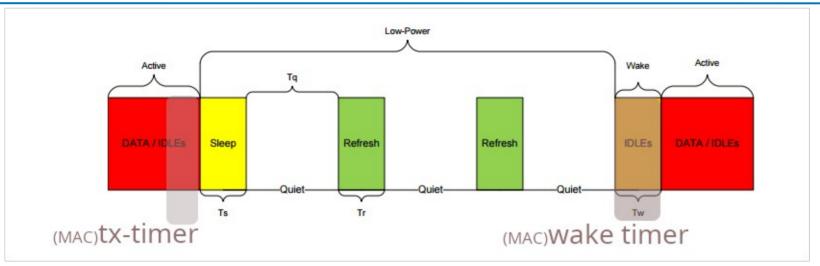
- drivers/net/dsa/b53/b53_common.c OK
 - Fixed by Florian Fainelli v6.9-rc4
- drivers/net/dsa/mt7530.c OK
 - Implemented René van Dorst v5.13
- drivers/net/ethernet/broadcom/genet/bcmmii.c OK
 - Fixed by Florian Fainelli v6.4-rc4
- drivers/net/ethernet/freescale/fec_main.c Partially
 - Mostly fixed by Andrew Lunn v6.8-rc6
 - Delay configurations seems to be broken

State of EEE Linux Kernel implementation

- drivers/net/ethernet/marvell/mvneta.c OK
 - Implemented by Russell King v4.15-rc5
- drivers/net/ethernet/microchip/lan743x_main.c
 - Fixed by Andrew Lunn v6.9-rc2
- drivers/net/ethernet/samsung/sxgbe/sxgbe_main.c
 - Looks broken. phy_init_eee() is only on open, not on link_up.
- drivers/net/ethernet/stmicro/stmmac/stmmac_main.c
 - Looks ok

How kernel EEE support is expected to work

- MAC driver is attaching PHY device
- If MAC supports Low Power Idle mode it calls phy_support_eee()
- PHYlib framework is deciding if EEE can be enabled. If yes, phydev→enable_tx_lpi == true
- MAC driver should use phydev→enable_tx_lpi to configure LPI mode on link_up() or adjust_link()
- phydev→enable_tx_lpi or phy_init_eee() can be used



Typical bugs

- phy_init_eee() or phydev→enable_tx_lpi are not used on link_up() or link_adjust()
- EEE/LPI is configured only over ethtool interface, no phy_init_eee() or phydev→enable_tx_lpi are used
- LPI or Wake timers are not calculated against actual clock frequency
- LPI and Wake timers are set from the ethtool tx-timer value
- Without using phy_support_eee(), EEE will not be advertised.

EEE MDI (cable) view

- Different components are involved. Signaling between MAC and PHY over xMII interface
- PHY timers: Ts, Tq, Tr (if wrong, link drop)
- MAC timers: tx-timer, wake timer (Tw)
- Tx-timer idle time between last data and LPI mode: if too low performance drop; too high no energy savings
- wake timer idle time between LPI and data: if too low frame corruption, too high performance drop

Fixing timers

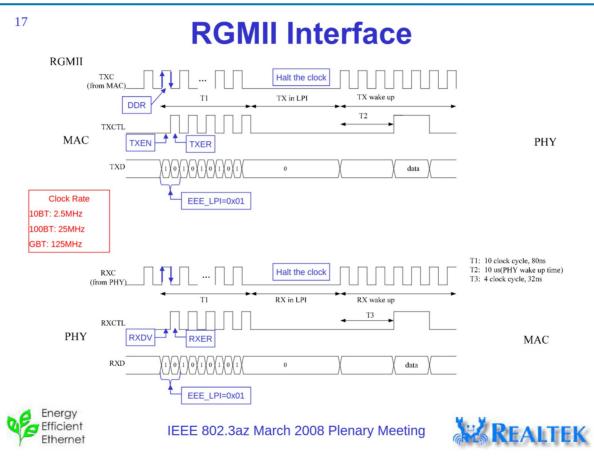
- PHY related timers like Ts, Tq, Tr need potentially better equipment and better PHY documentations.
 Related registers are usually not documented.
- MAC related timers like tx-timer and wake timer (Tw) are usually part of MAC drivers and easier to debug with not expensive scope by measuring xMII lines.

Signaling Low Power Idle

Signals between MAC and PHY (GMII)

TX_EN	TX_ER	TXD<7:0>	Description	PLS_DATA.request parameter	EEE I DI
0	0	00 through FF	Normal inter-frame	TRANSMIT_COMPLETE	EEE_LPI Opcode from
0	1	00	Reserved	_	MAC to
0	1	01	Low Power IDLE	EEE Low Power IDLE	PHY
0	1	02 through 0E	Reserved	_	
0	1	0F	Carrier Extend	EXTEND (eight bits)	MAC
RX_DV	RX_ER	RXD<7:0>	Description	PLS_DATA.indication parameter	TX MII R
0	0	00 through FF	Normal inter-frame	No applicable parameter	T
0	1	00	Normal inter-frame	No applicable parameter	PHY
0	1	01	Low Power IDLE	EEE Low Power IDLE	
0	1	02 through 0D	Reserved	_	EEE_LPI Opcode from
		: From 802.3a	z Task Force Dove_01_010	8.pdf	PHY to MAC

Clause 35


8

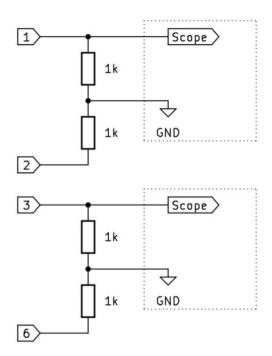
IEEE 802.3az March 2008 Plenary Meeting

Signaling Low Power Idle

Beware of PHYs with PHY mode EEE!!

- Make sure LPI signal on xMII interface do actually correspond to the idle on MDI (cable).
- If timing changes do not affect end result on MDI side, may be you have PHY mode EEE.
- There are many PHYs from different PHY vendors supporting this mode (Atheros, Broadcom, Realtek,..)
- It is not always publicly documented.

Oscilloscope


- No upper budget limit
- Let's reduce budget to get more hackers on board :)
- No 1000BaseT or 100BaseT decoder support is need
- It is enough to presence of the signal, not exact form of it.
- 2x channels is enough

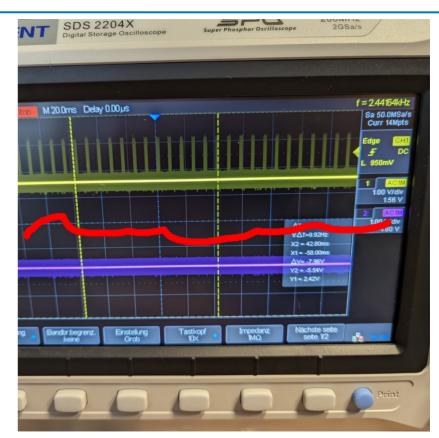
Probes


- Normally differential probe is needed
- But we are doing low budget setup, so let's use bunch of 1kOhm
- If you know your HW setup it should be less risky to do so.
- Be careful to avoid HW damage!!
- Make sure no PoE or PoDL is in use!!!

Probes – reducing noise

- Without differential probes and too long wires there will be too much noise
- Optimizing it a bit will make this setup more usable.

Get MDI-X under control


- First attach only one device
- ip I s dev eth0 up
- If pulse on both channels auto MDI-X is active
- Disable it to make things predictable

ethtool -s eth0 advertise 0x008 mdix on

- Some pre-configuration
- "advertise 0x008" advertise only 100BaseT/Full. It is easier to debug with low budget setup
- "mdix on" force MDI-X configuration. Not auto MDI-X. Link partner should stay Auto or depending on cable "mdix off"
- If mdix off/on is not working.
 Send patches:)

ethtool --show-eee eth0

EEE settings for eth0:

EEE status: enabled - active

Tx LPI: 500040 (us)

Supported EEE link modes: 100baseT/Full

1000baseT/Full

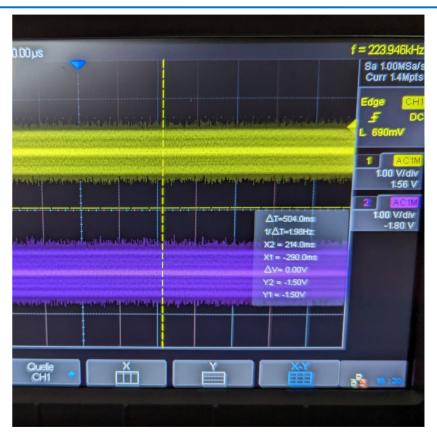
Advertised EEE link modes: 100baseT/Full

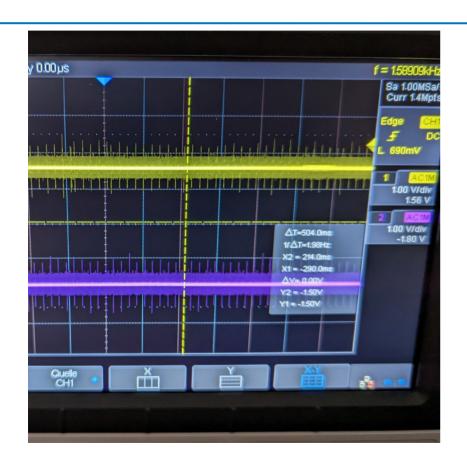
1000baseT/Full

Link partner advertised EEE link modes: 100baseT/Full

1000baseT/Full

ethtool --set-eee eth0 eee on


- If "EEE status: enabled active". We should get some how similar picture
- There are no active transfers on the link


ethtool --set-eee eth0 eee off

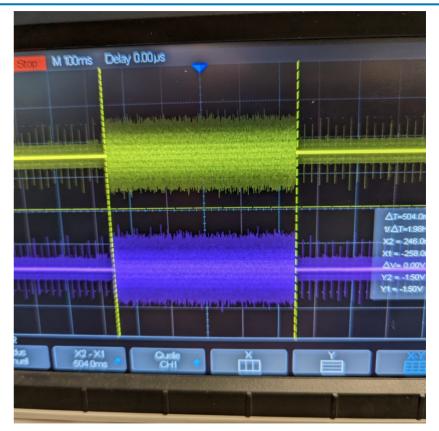

- If "EEE status: disabled"
- Or "EEE status: enabled inactive"

ethtool --set-eee eth0 eee on <> off

ethtool --set-eee eth0 tx-lpi off


- LPI Low Power Idle
- It is possible to partially disable EEE
- tx-lpi off disable TX LPI on local side
- By default tx-lpi on

ethtool --set-eee eth0 tx-timer 500000


- Tx-timer how long we should not enter LPI after transmission
- Send some packet to test this state. For example: mausezahn eth0 -c 1 -a rand -p 64

ethtool -s eth0 advertise 0x020

- Compare if things look similar with 1000BaseT
- advertise 0x020 advertise support only for 1000BaseT/Full
- Note: with 1Gbit same ping will appear on both channels

Thank you!

Questions?

