

OpenHCL: A Linux and Rust based
paravisor

Chris Oo – Microsoft

What is a paravisor?

• Firmware component that runs inside the guest at a higher privilege
level

• Provide emulation for unenlightened guests on CVM platforms
▪ APIC emulation and interrupt virtualization

• Provide services for guests
▪ vTPM
▪ Legacy emulated devices like serial
▪ Device translation

Why have a paravisor?

• Run guests that are not fully enlightened such as Windows and older
Linux

• Provide security isolation for guests that are not fully hardened

• Provide emulated devices such as vTPM, serial

• Provide device translation
▪ Translate NVMe to paravirtualized storage

• Host debuggers and diagnostic processes
▪ Allow debugging guests where traditional debuggers are hard like

CVMs

Why run vmm code in a paravisor?

• Move emulated devices inside into the guest
▪ Require guest to host compromise outside of compromising an

emulated device

• Support legacy OSes with accelerated devices assigned to a guest
▪ Translate an assigned NVMe device to emulated IDE inside the

paravisor

• Share confidential and non-confidential architecture
▪ Run the same VMM in the same environment for both

OpenHCL overview

• Linux and usermode Rust based paravisor from the OpenVMM project

• Runs at a higher privilege level
▪ VTL2 on Hyper-V
▪ L1 VM on Intel TDX
▪ VMPL0 on AMD SEV-SNP

• Provides various services to the guest
▪ CVM enlightenments and support
▪ Emulated device support
▪ Device translation such as from NVMe to paravirt storage
▪ Diagnostics

OpenHCL features

• Supports Hyper-V isolation (VTLs) on x86-64 and ARM64, AMD SEV-
SNP, Intel TDX

• Supports device translation

• Supports vTPM

• Supports various legacy device emulators such as serial

• Supports Hyper-V legacy bios, Hyper-V UEFI and Linux direct boot
guests

Usage in Azure

• Used in new Azure Boost SKUs

• Meets storage and networking performance requirements

• Used in over 10M cores and counting

Design philosophy

• Track upstream kernel
▪ Aim to upstream all kernel patches or have a path to upstream

• Do as much in usermode as possible
▪ Host the VMM itself in usermode
▪ Device drivers in usermode

• Do as much in safe idiomatic rust as possible

• Rust async-focused usermode VMM

• Keep VMM code OS agnostic
▪ Allows for running outside of OpenHCL

Why Rust?

• Prevent whole classes of memory safety issues
▪ Borrow checker
▪ Send & Sync traits

• Modern language with ecosystem of useful crates
▪ Traits
▪ Async
▪ Modern tooling with rust-analyzer

• Still provides enough low level control
▪ Able to use C APIs and talk directly with hardware

Why async Rust?

• Support a variety of different devices, especially high performance
devices

• Control execution inside different environments
▪ The VMM run in different environments, so being able to tailor

executors without needing to rewrite device code

• Control OS scheduling overhead
▪ Executor could be multithreaded, or singlethreaded or whatever

works best for that environment

Async Rust in OpenHCL

• Minimize paravisor runtime by minimizing OS threads

• Utilize per vcpu executors for most devices
▪ Each thread affinitized to a single vcpu
▪ Minimize context switch overhead between VMM exit handler and

devices
▪ Very important for device translation, where OpenHCL is in the

hotpath

• Some low performance devices and diagnostic services handled on
separate executor thread

OpenHCL VM

OpenHCL architecture

Why use Linux?

• Write std Rust for VMM code
▪ no_std Rust is especially difficult to code in
▪ We want to use stable Rust toolchains, not nightly for some no_std

features

• Supports standard tooling like gdbserver, perf, etc

• Write usermode drivers via VFIO

• Broadly supported Rust toolchain and crate ecosystem

• Familiar OS platform for contributors

Linux Kernel details

• Boot via device tree, no ACPI

• Minimal Kconfig
▪ Minimize binary size and runtime RAM usage
▪ Device drivers in usermode via VFIO

• mshv_vtl driver
▪ Provides virtualization APIs for usermode
▪ Provides access to physical addresses via mmap

• Otherwise standard APIs used by usermode VMM

Usermode processes

• Packaged as a single binary with multiple aliases and launch names

• openhcl_init

• openhcl_dump

• openhcl_crash

• VMM processes
▪ control & diagnostics server
▪ main vmm worker

openhcl_init

• Lightweight and simple init process to set various settings and launch
other processes
▪ Minimize binary size and complexity vs other options

• Setup kmsg logging

• Launches main VMM process next

openvmm (diag server)

• Main control process

• Launches child vmm worker that handles exits from the guest

• Handles diagnostics requests via ohcldiag-dev
▪ ohcldiag-dev runs on the host, and communicates with diag_server

via VSOCK

Example diagnostic commands

• kmsg
▪ Dump the current kmsg log in OpenHCL

• inspect
▪ Objects implement the Inspect trait throughout the codebase
▪ Allows inspection of object & system state via human readable text
▪ Some values modifiable at runtime, such as tracing log filter

• shell
▪ Remote shell into OpenHCL, useful for interactive development
▪ Provided via BusyBox

ohcldiag-dev demo

gdbstub demo

openvmm (VMM worker)

• Main process that acts as a VMM for the guest

• Handle exits from the platform

• Per vCPU executor hosting async tasks

• Interacts with mshv_vtl driver to perform VMM functions
▪ Modifying register state
▪ Accessing ram via mmap

Other utility processes

• openhcl_dump
▪ Collect core dumps of processes and write them to openhcl_crash
▪ Separate process to allow dumping any other process in the system

• openhcl_crash
▪ Write core dumps of usermode crashes to the host via hvsock

MMIO dispatch flow

Future roadmap

• Open source later this year

• Support ARM CCA

• Support KVM as host

• Support hosting devices in separate processes
▪ IE sandbox vTPM from other devices

Q/A

	Slide 1
	Slide 2: OpenHCL: A Linux and Rust based paravisor
	Slide 3: What is a paravisor? 
	Slide 4: Why have a paravisor?
	Slide 5: Why run vmm code in a paravisor?
	Slide 6: OpenHCL overview
	Slide 7: OpenHCL features
	Slide 8: Usage in Azure
	Slide 9: Design philosophy 
	Slide 10: Why Rust?
	Slide 11: Why async Rust?
	Slide 12: Async Rust in OpenHCL
	Slide 13: OpenHCL VM
	Slide 14: OpenHCL architecture
	Slide 15: Why use Linux?
	Slide 16: Linux Kernel details
	Slide 17: Usermode processes
	Slide 18: openhcl_init
	Slide 19: openvmm (diag server)
	Slide 20: Example diagnostic commands
	Slide 21: ohcldiag-dev demo
	Slide 22: gdbstub demo
	Slide 23: openvmm (VMM worker)
	Slide 24: Other utility processes
	Slide 25: MMIO dispatch flow
	Slide 26: Future roadmap
	Slide 27: Q/A

