
Generating BPF infrared decoders using finite
automations

Sean Young <sean@mess.org>

LPC, September 2024



$ whoami

▶ Sean Young <sean@mess.org>

▶ Maintainer of Infrared on Linux (spare time)

▶ Contractor



Introduction

▶ Infrared Decoding is done either in a few hard coded decoders
in kernel space, or user space

▶ User space decoding requires daemon and has poor latency

▶ Decoding is a simple state machine with flash/gap as input

▶ Decoding can be done in BPF programs today - both
configurable and low-latency



New tooling

▶ cir: Consumer InfraRed (not IrDA)

▶ Parses both .lirc.conf files and rc keymaps

▶ Converts both to IRP Notation

▶ IRP Notation is converted to BPF for daemon-less decoding

▶ Single tool that replaces ir-ctl, ir-keytable and all of lirc
tooling

▶ Written in rust (links to llvm for BPF codegen)

▶ https://github.com/seanyoung/cir



Simple IRP

IR protocols can be described in IRP Notation:

{40k,600}<1,-1|2,-1>(4,-1,F:8,-45m)[F:0..255]

▶ Usually a single line

▶ Can also describe complex protocols e.g. air conditioning
remotes

▶ A bit like regular expression

▶ Let’s convert to a state machine



Simple IRP

{40k,600}<1,-1|2,-1>(4,-1,F:8,-45m)[F:0..255]

cir decode --irp

’{40k,600}<1,-1|2,-1>(4,-1,F:8,-45m)[F:0..255]’
--save-nfa



Non-determinism

{40k,600}<1,-1|1,-3>(4,-1,F:8,-45m)[F:0..255]

▶ Decoder can be in multiple states at the same time (increases
eBPF program complexity)

▶ State machine is non-determinstic (NFA)

▶ Textbook answer: convert to DFA



Determinstic Finite Automation

▶ NFA to DFA conversion

▶ Powerset/Subset Construction

▶ Also removes empty nodes



Merge paths

▶ flash followed by flash: merge
▶ gap followed by gap: merge
▶ Simplifies decoder complexity
▶ Sometimes reduces node count



Merge paths



Remove duplicate state

▶ DFA may still have duplicate nodes

▶ Text book answer: DFA minimization



rc5 decoder

▶ Generated state machine is simpler than hand coded solution
in the kernel today!



Generating BPF #1

▶ Generate BPF MAP array for all variables (+ state variable)
▶ Generate LLVM IR

▶ Load state variable and switch to code for each state
▶ For each state, generate code for each edge
▶ If Flash/Gap/Assert does not match, try next edge
▶ If edge matches, set state to edge target
▶ If no edge matches, reset decoder (state=0)



Generating BPF #2

▶ Ask LLVM libs to generate optimized object file in memory

▶ All done in 1240 lines of rust, took two days to write

▶ Use aya crate to load BPF program and attach to lirc chardev

▶ Everything done in-memory and in a single binary



Thank you

▶ Using finite automations allows many optimizations to
simplify state machine

▶ Using llvm to futher optimize code generates very nice BPF
code

▶ Writing this in rust worked out very well

▶ Perhaps re-usable - maybe be usable for bpfilter/netfilter


	History of Infrared

