
Modernizing bpftrace with libbpf

Viktor Malík

Kernel Engineer, Red Hat

LPC, September 19, 2024

1 / 24

bpftrace overview

“High-level tracing language and tool for Linux based on BPF.”

Main bpftrace goals:
• Provide a powerful yet simple language for fast prototyping of tracing programs.
• Create an abstraction for the BPF layer.

Example: one-liner collecting numbers of VFS calls during one second:

bpftrace -e 'kprobe:vfs_* { @[func] = count() } interval:s:1 { exit() }'
Attaching 2 probes...
@[vfs_readlink]: 4
@[vfs_fstatat]: 5
[...]

2 / 24

bpftrace overview

“High-level tracing language and tool for Linux based on BPF.”

Main bpftrace goals:
• Provide a powerful yet simple language for fast prototyping of tracing programs.
• Create an abstraction for the BPF layer.

Example: one-liner collecting numbers of VFS calls during one second:

bpftrace -e 'kprobe:vfs_* { @[func] = count() } interval:s:1 { exit() }'
Attaching 2 probes...
@[vfs_readlink]: 4
@[vfs_fstatat]: 5
[...]

2 / 24

bpftrace overview

“High-level tracing language and tool for Linux based on BPF.”

Main bpftrace goals:
• Provide a powerful yet simple language for fast prototyping of tracing programs.
• Create an abstraction for the BPF layer.

Example: one-liner collecting numbers of VFS calls during one second:

bpftrace -e 'kprobe:vfs_* { @[func] = count() } interval:s:1 { exit() }'
Attaching 2 probes...
@[vfs_readlink]: 4
@[vfs_fstatat]: 5
[...]

2 / 24

Problem: legacy architecture
Legacy bpftrace workflow

1 Start with bpfscript program

2 Generate LLVM IR

3 Use LLVM to compile into BPF ELF object

4 For each map:
• call bpf_map_create to obtain FD
• manually fill FD to programs (relocate)

5 For each program:
• call bpf_prog_load to obtain FD
• call libbpf/BCC to attach

3 / 24

Problem: legacy architecture
Legacy bpftrace workflow

1 Start with bpfscript program

2 Generate LLVM IR

3 Use LLVM to compile into BPF ELF object

4 For each map:
• call bpf_map_create to obtain FD
• manually fill FD to programs (relocate)

5 For each program:
• call bpf_prog_load to obtain FD
• call libbpf/BCC to attach

3 / 24

Problem: legacy architecture
Legacy bpftrace workflow

1 Start with bpfscript program

2 Generate LLVM IR

3 Use LLVM to compile into BPF ELF object

4 For each map:
• call bpf_map_create to obtain FD
• manually fill FD to programs (relocate)

5 For each program:
• call bpf_prog_load to obtain FD
• call libbpf/BCC to attach

3 / 24

Problem: legacy architecture
Legacy bpftrace workflow

1 Start with bpfscript program

2 Generate LLVM IR

3 Use LLVM to compile into BPF ELF object

4 For each map:
• call bpf_map_create to obtain FD
• manually fill FD to programs (relocate)

5 For each program:
• call bpf_prog_load to obtain FD
• call libbpf/BCC to attach

3 / 24

Problem: legacy architecture
Legacy bpftrace workflow

1 Start with bpfscript program

2 Generate LLVM IR

3 Use LLVM to compile into BPF ELF object

4 For each map:
• call bpf_map_create to obtain FD
• manually fill FD to programs (relocate)

5 For each program:
• call bpf_prog_load to obtain FD
• call libbpf/BCC to attach

3 / 24

Problem: legacy architecture
Drawbacks and limitations

• Cannot use “modern” BPF features which rely on BTF and relocations:
• subprograms,
• CO-RE,
• global variables,
• kfuncs,
• …

• Duplicating a lot of operations already performed by libbpf.

4 / 24

Migration to new architecture

5 / 24

Migration to new architecture
Architecture overview

1 Start with bpfscript program

2 Generate LLVM IR

3 Use LLVM to compile into BPF ELF object

4 For each map:
• call bpf_map_create to obtain FD
• manually fill FD to programs (relocate)

5 For each program:
• call bpf_prog_load to obtain FD
• call libbpf/BCC to attach

6 / 24

Migration to new architecture
Architecture overview

1 Start with bpfscript program

2 Generate LLVM IR

3 Use LLVM to compile into libbpf-compliant BPF ELF object

4 For each map:
• call bpf_map_create to obtain FD
• manually fill FD to programs (relocate)

5 For each program:
• call bpf_prog_load to obtain FD
• call libbpf/BCC to attach

6 / 24

Migration to new architecture
Architecture overview

1 Start with bpfscript program

2 Generate LLVM IR

3 Use LLVM to compile into libbpf-compliant BPF ELF object

4 Call bpf_object__open and bpf_object__load

5 Call libbpf/BCC to attach

6 / 24

Migration to new architecture
Architecture overview

1 Start with bpfscript program

2 Generate LLVM IR

3 Use LLVM to compile into libbpf-compliant BPF ELF object

4 Call bpf_object__open and bpf_object__load

5 Call libbpf/BCC to attach

6 / 24

BPF ELF object
Requirements

• Programs are stored in TEXT sections and identified by function names

• Subprograms are stored in .text section

• Maps are stored in .maps section in BTF format

• License is stored in license section

There’s an ongoing standardization effort:
https://www.ietf.org/archive/id/draft-thaler-bpf-elf-00.html

7 / 24

https://www.ietf.org/archive/id/draft-thaler-bpf-elf-00.html

BPF ELF object
Programs and subprograms

• Each BPF (sub)program is represented as a separate function
• Problem are bpftrace wildcarded probes – same program is attached to multiple attach points

• Also add function info for (sub)programs:
• Create LLVM debug info
• Let LLVM generate BTF (.BTF and .BTF.ext sections)

8 / 24

BPF ELF object
Programs and subprograms

• Each BPF (sub)program is represented as a separate function
• Problem are bpftrace wildcarded probes – same program is attached to multiple attach points

• Also add function info for (sub)programs:
• Create LLVM debug info
• Let LLVM generate BTF (.BTF and .BTF.ext sections)

8 / 24

BPF ELF object
Maps

• Maps are defined as global variables in the .maps DATA section

• Each map needs to have a corresponding BTF type entry
• Mandatory fields are:

• type – e.g. BPF_MAP_TYPE_HASH
• max_entries
• key – key type
• value – value type

• Integer values are represented by pointers to arrays of ints in which dimensionality of the array
encodes the specified value.

9 / 24

BPF ELF object
Maps

• Maps are defined as global variables in the .maps DATA section

• Each map needs to have a corresponding BTF type entry
• Mandatory fields are:

• type – e.g. BPF_MAP_TYPE_HASH
• max_entries
• key – key type
• value – value type

• Integer values are represented by pointers to arrays of ints in which dimensionality of the array
encodes the specified value.

9 / 24

BPF ELF object
Map BTF definition example

[1] PTR '(anon)' type_id=3
[2] INT 'int' size=4 bits_offset=0 nr_bits=32 encoding=SIGNED
[3] ARRAY '(anon)' type_id=2 index_type_id=4 nr_elems=1
[4] INT '__ARRAY_SIZE_TYPE__' size=4 bits_offset=0 nr_bits=32 encoding=(none)
[5] PTR '(anon)' type_id=6
[6] ARRAY '(anon)' type_id=2 index_type_id=4 nr_elems=4096
[7] PTR '(anon)' type_id=8
[8] INT 'int64' size=8 bits_offset=0 nr_bits=64 encoding=SIGNED
[9] STRUCT '(anon)' size=32 vlen=4

'type' type_id=1 bits_offset=0
'max_entries' type_id=5 bits_offset=64
'key' type_id=7 bits_offset=128
'value' type_id=7 bits_offset=192

10 / 24

BPF ELF object
Map BTF definition example

[1] PTR '(anon)' type_id=3
[2] INT 'int' size=4 bits_offset=0 nr_bits=32 encoding=SIGNED
[3] ARRAY '(anon)' type_id=2 index_type_id=4 nr_elems=1
[4] INT '__ARRAY_SIZE_TYPE__' size=4 bits_offset=0 nr_bits=32 encoding=(none)
[5] PTR '(anon)' type_id=6
[6] ARRAY '(anon)' type_id=2 index_type_id=4 nr_elems=4096
[7] PTR '(anon)' type_id=8
[8] INT 'int64' size=8 bits_offset=0 nr_bits=64 encoding=SIGNED
[9] STRUCT '(anon)' size=32 vlen=4

'type' type_id=1 bits_offset=0
'max_entries' type_id=5 bits_offset=64
'key' type_id=7 bits_offset=128
'value' type_id=7 bits_offset=192

10 / 24

BPF ELF object
Map BTF definition example

[1] PTR '(anon)' type_id=3
[2] INT 'int' size=4 bits_offset=0 nr_bits=32 encoding=SIGNED
[3] ARRAY '(anon)' type_id=2 index_type_id=4 nr_elems=1
[4] INT '__ARRAY_SIZE_TYPE__' size=4 bits_offset=0 nr_bits=32 encoding=(none)
[5] PTR '(anon)' type_id=6
[6] ARRAY '(anon)' type_id=2 index_type_id=4 nr_elems=4096
[7] PTR '(anon)' type_id=8
[8] INT 'int64' size=8 bits_offset=0 nr_bits=64 encoding=SIGNED
[9] STRUCT '(anon)' size=32 vlen=4

'type' type_id=1 bits_offset=0
'max_entries' type_id=5 bits_offset=64
'key' type_id=7 bits_offset=128
'value' type_id=7 bits_offset=192

10 / 24

BPF ELF object
Map BTF definition example

[1] PTR '(anon)' type_id=3
[2] INT 'int' size=4 bits_offset=0 nr_bits=32 encoding=SIGNED
[3] ARRAY '(anon)' type_id=2 index_type_id=4 nr_elems=1
[4] INT '__ARRAY_SIZE_TYPE__' size=4 bits_offset=0 nr_bits=32 encoding=(none)
[5] PTR '(anon)' type_id=6
[6] ARRAY '(anon)' type_id=2 index_type_id=4 nr_elems=4096
[7] PTR '(anon)' type_id=8
[8] INT 'int64' size=8 bits_offset=0 nr_bits=64 encoding=SIGNED
[9] STRUCT '(anon)' size=32 vlen=4

'type' type_id=1 bits_offset=0
'max_entries' type_id=5 bits_offset=64
'key' type_id=7 bits_offset=128
'value' type_id=7 bits_offset=192

10 / 24

BPF ELF object
License

• Necessary to allow usage of GPL-only helpers

• Defined by a global string inside the license section:

@LICENSE = global [4 x i8] c"GPL\00", section "license"

11 / 24

New enabled features
For-loops for maps

• Allow iteration over all map elements:

kprobe:vfs_* {
@[func] = count();

}
END {
for ($kv : @) {
printf("%s called %d times\n", $kv.0, $kv.1);

}
}

• use bpf_for_each_map_elem under the hood

• loop body is transformed into a callback function

12 / 24

New enabled features
bpfscript subprograms

• Allow splitting scripts into multiple functions:

fn get_path($ps: struct path *): string[64] {
return str($ps->dentry->d_name.name);

}
kprobe:vfs_read {
printf("read %s\n", get_path((struct path *)arg0));

}

• Currently WIP by Tomáš Glozar

• Simplifies the code, allows code reuse

• Opens up a way to bpftrace standard library

13 / 24

New enabled features
Calling external functions

• Idea: allow calling BPF functions from other ELF files

• Example usage: stack walkers written in pure BPF

• Currently WIP by Alastair Robertson

14 / 24

New enabled features
…andmany more

• global variables (already used internally)

• kfuncs (WIP)

• CO-RE (ahead-of-time compiled programs – PoC already working)

• …

15 / 24

Problems (and solutions)

16 / 24

Incomplete description of the BPF ELF format

• Current document is not complete
• Missing parts:

• description of BTF map format
• (in)valid characters in probe names
• global variables format
• …and probably more

• It would be nice to proceed with the standardization effort or at least have a more complete
documentation of the format

• Is or should the ELF format be considered ABI of libbpf?

17 / 24

Wildcarded probes

• Problem: bpftrace needs to attach the same code to potentially many targets

• Possible solutions:
• Multi-probes

• available for certain program types only (kprobes, uprobes)
• could be added for other program types (fentry/fexit, (raw) tracepoints?)

• Duplicating programs in ELF object
• quite space-inefficient (ELF can go from 9k to 60k)
• sometimes inevitable (e.g. for tracepoint/USDT args)
• currently implemented when multi-probes are unavailable

18 / 24

Wildcarded probes

• Problem: bpftrace needs to attach the same code to potentially many targets

• Possible solutions:
• Multi-probes

• available for certain program types only (kprobes, uprobes)
• could be added for other program types (fentry/fexit, (raw) tracepoints?)

• Duplicating programs in ELF object
• quite space-inefficient (ELF can go from 9k to 60k)
• sometimes inevitable (e.g. for tracepoint/USDT args)
• currently implemented when multi-probes are unavailable

18 / 24

Wildcarded probes

• Problem: bpftrace needs to attach the same code to potentially many targets

• Possible solutions:
• Multi-probes

• available for certain program types only (kprobes, uprobes)
• could be added for other program types (fentry/fexit, (raw) tracepoints?)

• Duplicating programs in ELF object
• quite space-inefficient (ELF can go from 9k to 60k)
• sometimes inevitable (e.g. for tracepoint/USDT args)
• currently implemented when multi-probes are unavailable

18 / 24

Wildcarded probes

• Possible solutions (cont.):
• Manual cloning via bpf_prog_load

• ELF contains just one instance of the function which is processed by libbpf
• bpftrace clones the processed instructions by calling bpf_prog_load for each target
• used by retsnoop

• Using global subprograms
• makes the ELF object considerably smaller
• subprograms are still cloned in the kernel

• Using symbol aliasing
• compiler allows to create multiple symbol table entries for the same address
• each alias is interpreted as a different program by libbpf (and cloned)
• needs libbpf changes in relocations and linker
• too complicated

19 / 24

Wildcarded probes

• Possible solutions (cont.):
• Manual cloning via bpf_prog_load

• ELF contains just one instance of the function which is processed by libbpf
• bpftrace clones the processed instructions by calling bpf_prog_load for each target
• used by retsnoop

• Using global subprograms
• makes the ELF object considerably smaller
• subprograms are still cloned in the kernel

• Using symbol aliasing
• compiler allows to create multiple symbol table entries for the same address
• each alias is interpreted as a different program by libbpf (and cloned)
• needs libbpf changes in relocations and linker
• too complicated

19 / 24

Wildcarded probes

• Possible solutions (cont.):
• Manual cloning via bpf_prog_load

• ELF contains just one instance of the function which is processed by libbpf
• bpftrace clones the processed instructions by calling bpf_prog_load for each target
• used by retsnoop

• Using global subprograms
• makes the ELF object considerably smaller
• subprograms are still cloned in the kernel

• Using symbol aliasing
• compiler allows to create multiple symbol table entries for the same address
• each alias is interpreted as a different program by libbpf (and cloned)
• needs libbpf changes in relocations and linker
• too complicated

19 / 24

Wildcarded probes
Proposed solution

1 Implement manual cloning via bpf_prog_load
• it’s the simplest approach
• may be further simplified by new libbpf API
• also used by retsnoop

2 Gradually add multi-probe support for more program types
• fentry/fexit
• BTF-enabled raw tracepoints
• normal tracepoints should work out-of-box

20 / 24

Error reporting

• Problem: when bpf_object__load fails, it is impossible to determine which
program/map failed to load/create

• bpf_object__load returns -errno
• FDs are either -1 (uninitialized) of >0
• libbpf log contains information on which program/map failed to load/create

• Proposed solution: store -errno in program/map FDs in case of failure

21 / 24

Error reporting

• Problem: when bpf_object__load fails, it is impossible to determine which
program/map failed to load/create

• bpf_object__load returns -errno
• FDs are either -1 (uninitialized) of >0
• libbpf log contains information on which program/map failed to load/create

• Proposed solution: store -errno in program/map FDs in case of failure

21 / 24

Missing features and future work

22 / 24

Missing features

• Attachment via libbpf
• BCC is currently used for: k(ret)probe, u(ret)probe, tracepoints, USDTs, perf events
• Migrating these would allow bpftrace to drop dependency on BCC completely
• Eventually, we could even use auto-attachment based on section names

• CO-RE relocations
• Useful for AOT (ahead-of-time compilation)
• Should be now easy to do as libbpf should take care of everything

23 / 24

Missing features

• Attachment via libbpf
• BCC is currently used for: k(ret)probe, u(ret)probe, tracepoints, USDTs, perf events
• Migrating these would allow bpftrace to drop dependency on BCC completely
• Eventually, we could even use auto-attachment based on section names

• CO-RE relocations
• Useful for AOT (ahead-of-time compilation)
• Should be now easy to do as libbpf should take care of everything

23 / 24

Conclusion

• bpftrace underwent significant modernization by offloading a lot of program loading to libbpf

• May be a good inspiration to other projects striving to implement custom front-end for BPF,
using libbpf as the back-end

• There’s still a lot of work to do, especially on bpftrace side but also on libbpf/community side

• Do you want to discuss bpftrace? Come to our BoF session on Friday 5pm, Room 1.14.

Thank you for the attention!
Questions?

24 / 24

Conclusion

• bpftrace underwent significant modernization by offloading a lot of program loading to libbpf

• May be a good inspiration to other projects striving to implement custom front-end for BPF,
using libbpf as the back-end

• There’s still a lot of work to do, especially on bpftrace side but also on libbpf/community side

• Do you want to discuss bpftrace? Come to our BoF session on Friday 5pm, Room 1.14.

Thank you for the attention!
Questions?

24 / 24

Conclusion

• bpftrace underwent significant modernization by offloading a lot of program loading to libbpf

• May be a good inspiration to other projects striving to implement custom front-end for BPF,
using libbpf as the back-end

• There’s still a lot of work to do, especially on bpftrace side but also on libbpf/community side

• Do you want to discuss bpftrace? Come to our BoF session on Friday 5pm, Room 1.14.

Thank you for the attention!
Questions?

24 / 24

	Migration to new architecture
	Problems (and solutions)
	Missing features and future work

