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History

● “Towards a BPF Memory Model”, LPC 2021
– https://lpc.events/event/11/contributions/941/ 

● Kangrejos 2023 Hallway Track (with Jose Marchesi)
● “Instruction-Level BPF Memory Model”, IETF 118

– https://datatracker.ietf.org/doc/agenda-118-bpf/ 
– https://datatracker.ietf.org/meeting/118/materials/slides-118-bpf-bpf-memory-model-00

● “BPF Memory Model, Two Years On”, LPC 2023
– https://lpc.events/event/17/contributions/1580/ 

● “Instruction-Level BPF Memory Model”, living Google Document
– https://docs.google.com/document/d/1TaSEfWfLnRUi5KqkavUQyL2tThJXYWHS15qcbxIsFb0/edit?usp=sharing 

● “Instruction-level BPF memory model”, LSF/MM/BPF 2024
– https://lwn.net/Articles/976071/ (video: https://www.youtube.com/watch?v=QG-cLG9PekI) 
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● “Instruction-level BPF memory model”, LSF/MM/BPF 2024
– https://lwn.net/Articles/976071/ (video: https://www.youtube.com/watch?v=QG-cLG9PekI) What m

ore could possibly be 

needed???
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What Formal Model & Tools???
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What Formal Model & Tools???

● This model is upstream in the herdtools7 project
● To install and use:

git clone https://github.com/herd/herdtools7 
cd herdtools7
# Follow instructions in INSTALL.md.
herd7 path/to/BPF/litmus/test
# Sample tests in catalogue/bpf/tests.
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What Formal Model & Tools???
● Litmus tests in catalogue/bpf/tests:
CoRR+poonceonce+Once.litmus              R+fencembonceonces.litmus
CoRW+poonceonce+Once.litmus              R+poonceonces.litmus
CoWR+poonceonce+Once.litmus              S+atomiconce+data.litmus
CoWW+poonceonce.litmus                   SB+fence+fail_cmpxchg.litmus
depencency_ordered_before.litmus         SB+fencembonceonces.litmus
IRIW+fencembonceonces+OnceOnce.litmus    SB+fence+success_cmpxchg.litmus
IRIW+poonceonces+OnceOnce.litmus         SB+poonceonces.litmus
ISA2+poonceonces.litmus                  SB+rfionceonce-poonceonces.litmus
LB+fcas-addr-once+once-scas.litmus       S+fence+addr.litmus
LB+fcas-ctrlcvg-once+once-scas.litmus    S+fence+ctrl-read.litmus
LB+fcas-ctrl-once+once-scas.litmus       S+fence+ctrl-write.litmus
LB+fcas-data-once+once-scas.litmus       S+fence+data.litmus
LB+poonceonces.litmus                    S+onceatomic+data.litmus
LockTwice.litmus                         S+poonceonces.litmus
MP+fcas-addr-fcas+scas-scas.litmus       WRC+poonceonces+Once.litmus
MP+fcas-ctrl-fcas+scas-scas.litmus       WRC+pooncerelease+fencermbonceonce+Once.litmus
MP+fcas-data-fcas+scas-scas.litmus       W+RWC+poll+poaa+pola.litmus
MP+fcas-data-fcas+scas-scas-LKMM.litmus  X+addr-reads+corr-writes+data-rw.litmus
MP+poonceonces.litmus                    X-test-r2.litmus
MP+pooncerelease+poacquireonce.litmus

UPDATED
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What Formal Model & Tools???
● Litmus tests in catalogue/bpf/tests:
CoRR+poonceonce+Once.litmus              R+fencembonceonces.litmus
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LB+fcas-ctrlcvg-once+once-scas.litmus    S+fence+ctrl-read.litmus
LB+fcas-ctrl-once+once-scas.litmus       S+fence+ctrl-write.litmus
LB+fcas-data-once+once-scas.litmus       S+fence+data.litmus
LB+poonceonces.litmus                    S+onceatomic+data.litmus
LockTwice.litmus                         S+poonceonces.litmus
MP+fcas-addr-fcas+scas-scas.litmus       WRC+poonceonces+Once.litmus
MP+fcas-ctrl-fcas+scas-scas.litmus       WRC+pooncerelease+fencermbonceonce+Once.litmus
MP+fcas-data-fcas+scas-scas.litmus       W+RWC+poll+poaa+pola.litmus
MP+fcas-data-fcas+scas-scas-LKMM.litmus  X+addr-reads+corr-writes+data-rw.litmus
MP+poonceonces.litmus                    X-test-r2.litmus
MP+pooncerelease+poacquireonce.litmus

Plus more than 100 more as of

late Tuesday...
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Example BPF Litmus Test
BPF S+fence+data

{
int x=0; int y=10; 
0:r0=x; 0:r1=y;
0:r5=tmp; (* only used for the atomic op in P0 to enforce ordering *)
1:r0=x; 1:r1=y;
}

P0                                         | P1                         ;
*(u32 *)(r0 + 0) = 2                       | r2 = *(u32 *)(r1 + 0)      ;
r6 = atomic_fetch_add((u64*)(r5 + 0), r6)  | *(u32 *)(r0 + 0) = r2      ;
*(u32 *)(r1 + 0) = 0                       |                            ;

exists (1:r2=0 /\ x=2)
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And Corresponding herd7 Output

$ herd7 -model bpf_lkmm.cat S+fence+data.litmus
Test S+fence+data Allowed
States 3
1:r2=0; [x]=0;
1:r2=10; [x]=2;
1:r2=10; [x]=10;
No
Witnesses
Positive: 0 Negative: 3
Condition exists (1:r2=0 /\ [x]=2)
Observation S+fence+data Never 0 3
Time S+fence+data 0.00
Hash=a35dc5b17cde70582ebd0ea218dd3ba5
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Load-Acquire and Store-Release

https://lore.kernel.org/bpf/20240729183246.4110549-1-yepeilin@google.com/T/
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Load-Acquire and Store-Release

● Arbitrarily chose instruction formats
   r0 = load_acquire((u32 *)(r2 + 0))

   store_release((u32 *)(r2 + 0), r8)

● Chose RCpc vs. RCsc (ARM64 ldapr vs. ldar)
– ldapr (but not ldar) can be reordered with earlier stlr
– ARM tried just ldar, performance forced ldapr
– RCsc would force bad code on some architectures

● Made store_release A-commutative (see next slide)
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What is A-Cumulativity???

X = 1 R0 = X

release(Y, 1)

R1 = acquire(Y)

R2 = X (0 or 1??)

If release stores are not A-cumulative, the final value of R2 can be zero!

?

CPU 0 CPU 1 CPU 2
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What is A-Cumulativity???

X = 1 R0 = X

release(Y, 1)

R1 = acquire(Y)

R2 = X (0 or 1??)

If release stores are not A-cumulative, the final value of R2 can be zero!

?

CPU 0 CPU 1 CPU 2

All Linux-kernel arches provide A-

cumulativity and developer expect it
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What Did This Change Take?

git diff 4112e1ea..6315dd37 --stat herd lib/
 herd/BPFArch_herd.ml | 14 +++++++++++++-
 herd/BPFSem.ml       | 20 ++++++++++++++++++++
 herd/libdir/bpf.cat  | 11 ++++++++---
 lib/BPFBase.ml       | 23 +++++++++++++++++++++--
 lib/BPFLexer.mll     |  2 ++
 lib/BPFParser.mly    | 12 ++++++++++++ 
 6 files changed, 76 insertions(+), 6 deletions(-)
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Demo
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Validation
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Validation

● Convert existing LKMM tests to BPF!!!
– https://github.com/paulmckrcu/litmus 
– Early days, and hopefully replaced by something a 

bit more formal at some point  ;-)
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Validation: Convert LKMM to BPF

● tools/memory-model/litmus-tests:
–   35 Total
–   22 Without RCU, SRCU, locking, and weak barriers
–   20 Without "if" statements and smp_store_mb()
–   20 Potentially convertable to BPF
–   20 Compatible LKMM and BPF outcomes
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Validation: Convert LKMM to BPF

● tools/memory-model/litmus-tests:
–   35 Total
–   22 Without RCU, SRCU, locking, and weak barriers
–   20 Without "if" statements and smp_store_mb()
–   20 Potentially convertable to BPF
–   20 Compatible LKMM and BPF outcomesFound one bug in the conversion script 

(fixed)
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Validation

● https://github.com/paulmckrcu/litmus: 
–    5374 Total
–    2493 Without RCU, SRCU, locking, and weak barriers
–    2166 Without "if" statements and smp_store_mb()
–      146 Potentially convertable to BPF
–      133 Excluding casted/unmarked accesses and atomic RMW
–      126 Compatible LKMM and BPF outcomes
–          7 With incompatible outcomes
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Validation

● https://github.com/paulmckrcu/litmus: 
–    5374 Total
–    2493 Without RCU, SRCU, locking, and weak barriers
–    2166 Without "if" statements and smp_store_mb()
–      146 Potentially convertable to BPF
–      133 Excluding casted/unmarked accesses and atomic RMW
–      126 Compatible LKMM and BPF outcomes
–          7 With incompatible outcomes

Found many script bugs and one 

memory-model bug (fix pending)Fix was pending...
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Validation

● https://github.com/paulmckrcu/litmus: 
–    5374 Total
–    2493 Without RCU, SRCU, locking, and weak barriers
–    2166 Without "if" statements and smp_store_mb()
–      146 Potentially convertable to BPF
–      133 Excluding casted/unmarked accesses and atomic RMW
–      126 Compatible LKMM and BPF outcomes
–          0 With incompatible outcomes
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JIT Complications
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BPF Conditional Jump Instructions

● This weak ordering applies when:
– Either the src or dst registers depend on a prior load instruction (BPF_LD 

or BPF_LDX), and 
– There is a store instruction (BPF_ST or BPF_STX) before control flow 

converges, and following the conditional jump instruction in program order
– The restrictions outlined in the “CONTROL DEPENDENCIES” section of 
Documentation/memory-barriers.txt are faithfully followed

● Compilers do not understand control dependencies, and happily break them.
● Optimizations involving conditional-move instructions requires the “before 

control flow converges” restriction
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BPF Instructions To Other Instructions

Language Memory Model
(C, C++, LKMM, ...)

Instruction-Level BPF
Memory Model

Hardware ISA Memory Model
(x86, ARMv8, RISC-V, ...)

Compiler

JIT

Exists

Exists

Now exists
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JIT Complications

● Register Mismatches
● ABI Calling Conventions
● Backend Optimizations
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Register Mismatches

● BPF has R0-R10, real hardware has 16, 32, …
● Can map BPF R0-R10 to fixed HW registers

– Usually gives up performance: spills/reloads
● If fewer HW registers, dynamically map
● Many JITs treat R0-R10 as C-language auto 

variables whose addresses have not been taken
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ABI Calling Conventions

● BPF has calling conventions
● But so do hardware-assembly BPF helpers
● JIT might need to map calling conventions
● Fun when doing stack unwinding: shadow stack
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Backend Optimizations

● Inlining complicates stack unwinding and optimizations
● Arithmetic optimizations

– Multiplication by zero replaced by zero, discarding other operand 
and computations leading up to it

– Subtracting an expression from itself is also cancelled
● Type-based inference

– Range-based tracking of register values permits eliding of branch 
instructions
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Optimizations Break Dependencies
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Checking Dependencies

● The klitmus tool starts with an LKMM litmus test, then 
creates a kernel module that tests it
– Can prove something happens, but cannot prove that 

something cannot happen
● Use klitmus-like tool translate JIT BPF assembly litmus 

tests to a kernel module, check for broken dependencies
– Again, cannot prove breakage does not happen: Still useful
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Where Is the BPF Memory Model?

● Overall direction set in 2021
● Informal instruction-level ordering in late 2023
● Formal model and tools in early 2024
● Handle new load-acquire and store-release instructions in late 2024

– Adjustments might be needed based on eventual instruction format and semantics
● Verification against LKMM in late 2024 (support for “if” statements still needed)
● Things known to still be left:

– There might also be a full-barrier instruction
● Currently emulated with no-operation value-returning atomic operations

– Comparison of BPF MM against hardware models (klitmus-like tool TBD)
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Summary



36

Summary

● BPF memory model now has:
– Prototype load-acquire/store-release handling
– Automated checking against LKMM

● Other than some atomics and “if” statements
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For More Information

● Linux-kernel BPF standards directory (includes instruction definitions)
– Documentation/bpf/standardization

● The Herd toolsuite for memory-model verification and testing
– https://github.com/herd/herdtools7 with base memory model
– https://github.com/puranjaymohan/herdtools7.git with load-acquire/store-

release prototype
● “Is Parallel Programming Hard, And, If So, What Can You Do About It?”

– Chapter 12 (“Formal Verification”)
● https://mirrors.edge.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html 
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Questions?
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Backup
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Review of Informal Model

● BPF Atomic Instructions
● BPF Conditional Jump Instructions
● BPF Load instructions
● BPF Memory-Reference Instructions
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BPF Atomic Instructions

● BPF_XCHG, BPF_CMPXCHG
● BPF_ADD, BPF_OR, BPF_AND, BPF_XOR
● BPF_FETCH with one of the above
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BPF Atomic Instructions 1/3

● BPF_XCHG and BPF_CMPXCHG instructions are fully ordered
● All CPUs and tasks agree that all instructions preceding or following 

a given BPF_XCHG or BPF_CMPXCHG instruction are ordered before 
or after, respectively, that same instruction
– Consistent with Linux-kernel atomic_xchg() and 
atomic_cmpxchg(), respectively

– Alternatively, consistent with the following:
● smp_mb(); atomic_cmpxchg_relaxed(); smp_mb();
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BPF Atomic Instructions 2/3

● BPF_ADD, BPF_OR, BPF_AND, BPF_XOR 
instructions are unordered

● CPUs and JITs can reorder these instructions freely
– Consistent with Linux-kernel 
atomic_add(), atomic_or(), 
atomic_and(), and atomic_xor() APIs
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BPF Atomic Instructions 3/3

● When accompanied by BPF_FETCH, BPF_ADD, BPF_OR, 
BPF_AND, BPF_XOR instructions are fully ordered

● All CPUs and tasks agree that all instructions preceding or 
following a given instruction adorned with BPF_FETCH are 
ordered before or after, respectively, that same instruction
– Consistent with Linux-kernel atomic_fetch_add(), 
atomic_fetch_or(), atomic_fetch_and(), and 
atomic_fetch_xor() APIs
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BPF Conditional Jump Instructions

● Modifiers to BPF_JMP32 and BPF_JMP instructions:
– BPF_JEQ, BPF_JGT, BPF_JGE, BPF_JSET, BPF_JNE, 
BPF_JSGT, BPF_JSGE, BPF_JLT, BPF_JLE, BPF_JSLT, 
and BPF_JSLE 

● Unconditional jump instructions (BPF_JA, 
BPF_CALL, BPF_EXIT) provide no memory-ordering 
semantics
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BPF Conditional Jump Instructions

● These modifiers to BPF_JMP32 and BPF_JMP 
instructions provide weak ordering:
– BPF_JEQ, BPF_JGT, BPF_JGE, BPF_JSET, 
BPF_JNE, BPF_JSGT, BPF_JSGE, BPF_JLT, 
BPF_JLE, BPF_JSLT, and BPF_JSLE 

● Too-smart JITs might need to be careful
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BPF Conditional Jump Instructions

● This weak ordering applies when:
– Either the src or dst registers depend on a prior load instruction (BPF_LD 

or BPF_LDX), and 
– There is a store instruction (BPF_ST or BPF_STX) before control flow 

converges, and
– The restrictions outlined in the “CONTROL DEPENDENCIES” section of 
Documentation/memory-barriers.txt are faithfully followed

● Compilers do not understand control dependencies, and happily break them.
● Optimizations involving conditional-move instructions requires the “before control 

flow converges” restriction
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BPF Conditional Jump Instructions

● This weak ordering applies when:
– Either the src or dst registers depend on a prior load instruction (BPF_LD 

or BPF_LDX), and 
– There is a store instruction (BPF_ST or BPF_STX) before control flow 

converges, and following the conditional jump instruction in program order
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BPF Conditional Jump Instructions

● This weak ordering applies when:
– Either the src or dst registers depend on a prior load instruction (BPF_LD 

or BPF_LDX), and 
– There is a store instruction (BPF_ST or BPF_STX) before control flow 

converges, and following the conditional jump instruction in program order
– The restrictions outlined in the “CONTROL DEPENDENCIES” section of 
Documentation/memory-barriers.txt are faithfully followed

● Compilers do not understand control dependencies, and happily break them.
● Optimizations involving conditional-move instructions requires the “before 

control flow converges” restrictionFriends don’t let frie
nds run BPF assembly 

through an optimizing compiler
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