
 

Instruction-level BPF memory model

© 2024 Meta Platforms

Paul E. McKenney, Meta Platforms Kernel Team

Puranjay Mohan, Kernel Developer at Amazon Web Services

Linux Plumbers Conference, eBPF Track, September 20, 2024



2

History

● “Towards a BPF Memory Model”, LPC 2021
– https://lpc.events/event/11/contributions/941/ 

● Kangrejos 2023 Hallway Track (with Jose Marchesi)
● “Instruction-Level BPF Memory Model”, IETF 118

– https://datatracker.ietf.org/doc/agenda-118-bpf/ 
– https://datatracker.ietf.org/meeting/118/materials/slides-118-bpf-bpf-memory-model-00

● “BPF Memory Model, Two Years On”, LPC 2023
– https://lpc.events/event/17/contributions/1580/ 

● “Instruction-Level BPF Memory Model”, living Google Document
– https://docs.google.com/document/d/1TaSEfWfLnRUi5KqkavUQyL2tThJXYWHS15qcbxIsFb0/edit?usp=sharing 

● “Instruction-level BPF memory model”, LSF/MM/BPF 2024
– https://lwn.net/Articles/976071/ (video: https://www.youtube.com/watch?v=QG-cLG9PekI) 



3

History

● “Towards a BPF Memory Model”, LPC 2021
– https://lpc.events/event/11/contributions/941/ 

● Kangrejos 2023 Hallway Track (with Jose Marchesi)
● “Instruction-Level BPF Memory Model”, IETF 118

– https://datatracker.ietf.org/doc/agenda-118-bpf/ 
– https://datatracker.ietf.org/meeting/118/materials/slides-118-bpf-bpf-memory-model-00

● “BPF Memory Model, Two Years On”, LPC 2023
– https://lpc.events/event/17/contributions/1580/ 

● “Instruction-Level BPF Memory Model”, living Google Document
– https://docs.google.com/document/d/1TaSEfWfLnRUi5KqkavUQyL2tThJXYWHS15qcbxIsFb0/edit?usp=sharing 

● “Instruction-level BPF memory model”, LSF/MM/BPF 2024
– https://lwn.net/Articles/976071/ (video: https://www.youtube.com/watch?v=QG-cLG9PekI) What m

ore could possibly be 

needed???



4

What Formal Model & Tools???



5

What Formal Model & Tools???

● This model is upstream in the herdtools7 project
● To install and use:

git clone https://github.com/herd/herdtools7 
cd herdtools7
# Follow instructions in INSTALL.md.
herd7 path/to/BPF/litmus/test
# Sample tests in catalogue/bpf/tests.



6

What Formal Model & Tools???
● Litmus tests in catalogue/bpf/tests:
CoRR+poonceonce+Once.litmus              R+fencembonceonces.litmus
CoRW+poonceonce+Once.litmus              R+poonceonces.litmus
CoWR+poonceonce+Once.litmus              S+atomiconce+data.litmus
CoWW+poonceonce.litmus                   SB+fence+fail_cmpxchg.litmus
depencency_ordered_before.litmus         SB+fencembonceonces.litmus
IRIW+fencembonceonces+OnceOnce.litmus    SB+fence+success_cmpxchg.litmus
IRIW+poonceonces+OnceOnce.litmus         SB+poonceonces.litmus
ISA2+poonceonces.litmus                  SB+rfionceonce-poonceonces.litmus
LB+fcas-addr-once+once-scas.litmus       S+fence+addr.litmus
LB+fcas-ctrlcvg-once+once-scas.litmus    S+fence+ctrl-read.litmus
LB+fcas-ctrl-once+once-scas.litmus       S+fence+ctrl-write.litmus
LB+fcas-data-once+once-scas.litmus       S+fence+data.litmus
LB+poonceonces.litmus                    S+onceatomic+data.litmus
LockTwice.litmus                         S+poonceonces.litmus
MP+fcas-addr-fcas+scas-scas.litmus       WRC+poonceonces+Once.litmus
MP+fcas-ctrl-fcas+scas-scas.litmus       WRC+pooncerelease+fencermbonceonce+Once.litmus
MP+fcas-data-fcas+scas-scas.litmus       W+RWC+poll+poaa+pola.litmus
MP+fcas-data-fcas+scas-scas-LKMM.litmus  X+addr-reads+corr-writes+data-rw.litmus
MP+poonceonces.litmus                    X-test-r2.litmus
MP+pooncerelease+poacquireonce.litmus

UPDATED



7

What Formal Model & Tools???
● Litmus tests in catalogue/bpf/tests:
CoRR+poonceonce+Once.litmus              R+fencembonceonces.litmus
CoRW+poonceonce+Once.litmus              R+poonceonces.litmus
CoWR+poonceonce+Once.litmus              S+atomiconce+data.litmus
CoWW+poonceonce.litmus                   SB+fence+fail_cmpxchg.litmus
depencency_ordered_before.litmus         SB+fencembonceonces.litmus
IRIW+fencembonceonces+OnceOnce.litmus    SB+fence+success_cmpxchg.litmus
IRIW+poonceonces+OnceOnce.litmus         SB+poonceonces.litmus
ISA2+poonceonces.litmus                  SB+rfionceonce-poonceonces.litmus
LB+fcas-addr-once+once-scas.litmus       S+fence+addr.litmus
LB+fcas-ctrlcvg-once+once-scas.litmus    S+fence+ctrl-read.litmus
LB+fcas-ctrl-once+once-scas.litmus       S+fence+ctrl-write.litmus
LB+fcas-data-once+once-scas.litmus       S+fence+data.litmus
LB+poonceonces.litmus                    S+onceatomic+data.litmus
LockTwice.litmus                         S+poonceonces.litmus
MP+fcas-addr-fcas+scas-scas.litmus       WRC+poonceonces+Once.litmus
MP+fcas-ctrl-fcas+scas-scas.litmus       WRC+pooncerelease+fencermbonceonce+Once.litmus
MP+fcas-data-fcas+scas-scas.litmus       W+RWC+poll+poaa+pola.litmus
MP+fcas-data-fcas+scas-scas-LKMM.litmus  X+addr-reads+corr-writes+data-rw.litmus
MP+poonceonces.litmus                    X-test-r2.litmus
MP+pooncerelease+poacquireonce.litmus

Plus more than 100 more as of

late Tuesday...



8

Example BPF Litmus Test
BPF S+fence+data

{
int x=0; int y=10; 
0:r0=x; 0:r1=y;
0:r5=tmp; (* only used for the atomic op in P0 to enforce ordering *)
1:r0=x; 1:r1=y;
}

P0                                         | P1                         ;
*(u32 *)(r0 + 0) = 2                       | r2 = *(u32 *)(r1 + 0)      ;
r6 = atomic_fetch_add((u64*)(r5 + 0), r6)  | *(u32 *)(r0 + 0) = r2      ;
*(u32 *)(r1 + 0) = 0                       |                            ;

exists (1:r2=0 /\ x=2)



9

And Corresponding herd7 Output

$ herd7 -model bpf_lkmm.cat S+fence+data.litmus
Test S+fence+data Allowed
States 3
1:r2=0; [x]=0;
1:r2=10; [x]=2;
1:r2=10; [x]=10;
No
Witnesses
Positive: 0 Negative: 3
Condition exists (1:r2=0 /\ [x]=2)
Observation S+fence+data Never 0 3
Time S+fence+data 0.00
Hash=a35dc5b17cde70582ebd0ea218dd3ba5



10

Load-Acquire and Store-Release

https://lore.kernel.org/bpf/20240729183246.4110549-1-yepeilin@google.com/T/



11

Load-Acquire and Store-Release

● Arbitrarily chose instruction formats
   r0 = load_acquire((u32 *)(r2 + 0))

   store_release((u32 *)(r2 + 0), r8)

● Chose RCpc vs. RCsc (ARM64 ldapr vs. ldar)
– ldapr (but not ldar) can be reordered with earlier stlr
– ARM tried just ldar, performance forced ldapr
– RCsc would force bad code on some architectures

● Made store_release A-commutative (see next slide)



12

What is A-Cumulativity???

X = 1 R0 = X

release(Y, 1)

R1 = acquire(Y)

R2 = X (0 or 1??)

If release stores are not A-cumulative, the final value of R2 can be zero!

?

CPU 0 CPU 1 CPU 2



13

What is A-Cumulativity???

X = 1 R0 = X

release(Y, 1)

R1 = acquire(Y)

R2 = X (0 or 1??)

If release stores are not A-cumulative, the final value of R2 can be zero!

?

CPU 0 CPU 1 CPU 2

All Linux-kernel arches provide A-

cumulativity and developer expect it



14

What Did This Change Take?

git diff 4112e1ea..6315dd37 --stat herd lib/
 herd/BPFArch_herd.ml | 14 +++++++++++++-
 herd/BPFSem.ml       | 20 ++++++++++++++++++++
 herd/libdir/bpf.cat  | 11 ++++++++---
 lib/BPFBase.ml       | 23 +++++++++++++++++++++--
 lib/BPFLexer.mll     |  2 ++
 lib/BPFParser.mly    | 12 ++++++++++++ 
 6 files changed, 76 insertions(+), 6 deletions(-)



15

Demo



16

Validation



17

Validation

● Convert existing LKMM tests to BPF!!!
– https://github.com/paulmckrcu/litmus 
– Early days, and hopefully replaced by something a 

bit more formal at some point  ;-)



18

Validation: Convert LKMM to BPF

● tools/memory-model/litmus-tests:
–   35 Total
–   22 Without RCU, SRCU, locking, and weak barriers
–   20 Without "if" statements and smp_store_mb()
–   20 Potentially convertable to BPF
–   20 Compatible LKMM and BPF outcomes



19

Validation: Convert LKMM to BPF

● tools/memory-model/litmus-tests:
–   35 Total
–   22 Without RCU, SRCU, locking, and weak barriers
–   20 Without "if" statements and smp_store_mb()
–   20 Potentially convertable to BPF
–   20 Compatible LKMM and BPF outcomesFound one bug in the conversion script 

(fixed)



20

Validation

● https://github.com/paulmckrcu/litmus: 
–    5374 Total
–    2493 Without RCU, SRCU, locking, and weak barriers
–    2166 Without "if" statements and smp_store_mb()
–      146 Potentially convertable to BPF
–      133 Excluding casted/unmarked accesses and atomic RMW
–      126 Compatible LKMM and BPF outcomes
–          7 With incompatible outcomes



21

Validation

● https://github.com/paulmckrcu/litmus: 
–    5374 Total
–    2493 Without RCU, SRCU, locking, and weak barriers
–    2166 Without "if" statements and smp_store_mb()
–      146 Potentially convertable to BPF
–      133 Excluding casted/unmarked accesses and atomic RMW
–      126 Compatible LKMM and BPF outcomes
–          7 With incompatible outcomes

Found many script bugs and one 

memory-model bug (fix pending)



22

Validation

● https://github.com/paulmckrcu/litmus: 
–    5374 Total
–    2493 Without RCU, SRCU, locking, and weak barriers
–    2166 Without "if" statements and smp_store_mb()
–      146 Potentially convertable to BPF
–      133 Excluding casted/unmarked accesses and atomic RMW
–      126 Compatible LKMM and BPF outcomes
–          7 With incompatible outcomes

Found many script bugs and one 

memory-model bug (fix pending)Fix was pending...



23

Validation

● https://github.com/paulmckrcu/litmus: 
–    5374 Total
–    2493 Without RCU, SRCU, locking, and weak barriers
–    2166 Without "if" statements and smp_store_mb()
–      146 Potentially convertable to BPF
–      133 Excluding casted/unmarked accesses and atomic RMW
–      126 Compatible LKMM and BPF outcomes
–          0 With incompatible outcomes



24

JIT Complications



25

BPF Conditional Jump Instructions

● This weak ordering applies when:
– Either the src or dst registers depend on a prior load instruction (BPF_LD 

or BPF_LDX), and 
– There is a store instruction (BPF_ST or BPF_STX) before control flow 

converges, and following the conditional jump instruction in program order
– The restrictions outlined in the “CONTROL DEPENDENCIES” section of 
Documentation/memory-barriers.txt are faithfully followed

● Compilers do not understand control dependencies, and happily break them.
● Optimizations involving conditional-move instructions requires the “before 

control flow converges” restriction



26

BPF Instructions To Other Instructions

Language Memory Model
(C, C++, LKMM, ...)

Instruction-Level BPF
Memory Model

Hardware ISA Memory Model
(x86, ARMv8, RISC-V, ...)

Compiler

JIT

Exists

Exists

Now exists



27

BPF Instructions To Other Instructions

Language Memory Model
(C, C++, LKMM, ...)

Instruction-Level BPF
Memory Model

Hardware ISA Memory Model
(x86, ARMv8, RISC-V, ...)

Compiler

JIT

Exists

Exists

Now exists

JI
T 

is
 s

im
ila

r t
o 

a
co

m
pi

le
r b

ac
ke

nd
.

H
ow

 to
 p

re
se

rv
e

fu
ll 

se
m

an
tic

s?



28

JIT Complications

● Register Mismatches
● ABI Calling Conventions
● Backend Optimizations



29

Register Mismatches

● BPF has R0-R10, real hardware has 16, 32, …
● Can map BPF R0-R10 to fixed HW registers

– Usually gives up performance: spills/reloads
● If fewer HW registers, dynamically map
● Many JITs treat R0-R10 as C-language auto 

variables whose addresses have not been taken



30

ABI Calling Conventions

● BPF has calling conventions
● But so do hardware-assembly BPF helpers
● JIT might need to map calling conventions
● Fun when doing stack unwinding: shadow stack



31

Backend Optimizations

● Inlining complicates stack unwinding and optimizations
● Arithmetic optimizations

– Multiplication by zero replaced by zero, discarding other operand 
and computations leading up to it

– Subtracting an expression from itself is also cancelled
● Type-based inference

– Range-based tracking of register values permits eliding of branch 
instructions



32

Optimizations Break Dependencies



33

Checking Dependencies

● The klitmus tool starts with an LKMM litmus test, then 
creates a kernel module that tests it
– Can prove something happens, but cannot prove that 

something cannot happen
● Use klitmus-like tool translate JIT BPF assembly litmus 

tests to a kernel module, check for broken dependencies
– Again, cannot prove breakage does not happen: Still useful



34

Where Is the BPF Memory Model?

● Overall direction set in 2021
● Informal instruction-level ordering in late 2023
● Formal model and tools in early 2024
● Handle new load-acquire and store-release instructions in late 2024

– Adjustments might be needed based on eventual instruction format and semantics
● Verification against LKMM in late 2024 (support for “if” statements still needed)
● Things known to still be left:

– There might also be a full-barrier instruction
● Currently emulated with no-operation value-returning atomic operations

– Comparison of BPF MM against hardware models (klitmus-like tool TBD)



35

Summary



36

Summary

● BPF memory model now has:
– Prototype load-acquire/store-release handling
– Automated checking against LKMM

● Other than some atomics and “if” statements



37

For More Information

● Linux-kernel BPF standards directory (includes instruction definitions)
– Documentation/bpf/standardization

● The Herd toolsuite for memory-model verification and testing
– https://github.com/herd/herdtools7 with base memory model
– https://github.com/puranjaymohan/herdtools7.git with load-acquire/store-

release prototype
● “Is Parallel Programming Hard, And, If So, What Can You Do About It?”

– Chapter 12 (“Formal Verification”)
● https://mirrors.edge.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html 



38

Questions?



39

Backup



40

Review of Informal Model

● BPF Atomic Instructions
● BPF Conditional Jump Instructions
● BPF Load instructions
● BPF Memory-Reference Instructions



41

BPF Atomic Instructions

● BPF_XCHG, BPF_CMPXCHG
● BPF_ADD, BPF_OR, BPF_AND, BPF_XOR
● BPF_FETCH with one of the above



42

BPF Atomic Instructions 1/3

● BPF_XCHG and BPF_CMPXCHG instructions are fully ordered
● All CPUs and tasks agree that all instructions preceding or following 

a given BPF_XCHG or BPF_CMPXCHG instruction are ordered before 
or after, respectively, that same instruction
– Consistent with Linux-kernel atomic_xchg() and 
atomic_cmpxchg(), respectively

– Alternatively, consistent with the following:
● smp_mb(); atomic_cmpxchg_relaxed(); smp_mb();



43

BPF Atomic Instructions 2/3

● BPF_ADD, BPF_OR, BPF_AND, BPF_XOR 
instructions are unordered

● CPUs and JITs can reorder these instructions freely
– Consistent with Linux-kernel 
atomic_add(), atomic_or(), 
atomic_and(), and atomic_xor() APIs



44

BPF Atomic Instructions 3/3

● When accompanied by BPF_FETCH, BPF_ADD, BPF_OR, 
BPF_AND, BPF_XOR instructions are fully ordered

● All CPUs and tasks agree that all instructions preceding or 
following a given instruction adorned with BPF_FETCH are 
ordered before or after, respectively, that same instruction
– Consistent with Linux-kernel atomic_fetch_add(), 
atomic_fetch_or(), atomic_fetch_and(), and 
atomic_fetch_xor() APIs



45

BPF Conditional Jump Instructions

● Modifiers to BPF_JMP32 and BPF_JMP instructions:
– BPF_JEQ, BPF_JGT, BPF_JGE, BPF_JSET, BPF_JNE, 
BPF_JSGT, BPF_JSGE, BPF_JLT, BPF_JLE, BPF_JSLT, 
and BPF_JSLE 

● Unconditional jump instructions (BPF_JA, 
BPF_CALL, BPF_EXIT) provide no memory-ordering 
semantics



46

BPF Conditional Jump Instructions

● These modifiers to BPF_JMP32 and BPF_JMP 
instructions provide weak ordering:
– BPF_JEQ, BPF_JGT, BPF_JGE, BPF_JSET, 
BPF_JNE, BPF_JSGT, BPF_JSGE, BPF_JLT, 
BPF_JLE, BPF_JSLT, and BPF_JSLE 

● Too-smart JITs might need to be careful



47

BPF Conditional Jump Instructions

● This weak ordering applies when:
– Either the src or dst registers depend on a prior load instruction (BPF_LD 

or BPF_LDX), and 
– There is a store instruction (BPF_ST or BPF_STX) before control flow 

converges, and
– The restrictions outlined in the “CONTROL DEPENDENCIES” section of 
Documentation/memory-barriers.txt are faithfully followed

● Compilers do not understand control dependencies, and happily break them.
● Optimizations involving conditional-move instructions requires the “before control 

flow converges” restriction



48

BPF Conditional Jump Instructions

● This weak ordering applies when:
– Either the src or dst registers depend on a prior load instruction (BPF_LD 

or BPF_LDX), and 
– There is a store instruction (BPF_ST or BPF_STX) before control flow 

converges, and following the conditional jump instruction in program order
– The restrictions outlined in the “CONTROL DEPENDENCIES” section of 
Documentation/memory-barriers.txt are faithfully followed

● Compilers do not understand control dependencies, and happily break them.
● Optimizations involving conditional-move instructions requires the “before 

control flow converges” restriction



49

BPF Conditional Jump Instructions

● This weak ordering applies when:
– Either the src or dst registers depend on a prior load instruction (BPF_LD 

or BPF_LDX), and 
– There is a store instruction (BPF_ST or BPF_STX) before control flow 

converges, and following the conditional jump instruction in program order
– The restrictions outlined in the “CONTROL DEPENDENCIES” section of 
Documentation/memory-barriers.txt are faithfully followed

● Compilers do not understand control dependencies, and happily break them.
● Optimizations involving conditional-move instructions requires the “before 

control flow converges” restrictionFriends don’t let frie
nds run BPF assembly 

through an optimizing compiler


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

