
eBPF-specialized Kernel for
I/O Intensive Applications

Kumar Kartikeya Dwivedi, Rishabh Iyer, Sanidhya Kashyap

Before we begin…

● Any misrepresentation of other work is my mistake / responsibility.
● I’m looking for feedback, these are early ideas.
● Please poke holes!

Problem Statement

● Growing hardware capacity and speed is highlighting host CPU bottlenecks.
○ CPU speeds not growing as quickly.

Problem Statement

● Growing hardware capacity and speed is highlighting host CPU bottlenecks.
○ CPU speeds not growing as quickly.

● Operating systems overfit for applications due to genericity.
○ E.g. much of the functionality in the data path may not be needed, but cost is paid.

Problem Statement

● Growing hardware capacity and speed is highlighting host CPU bottlenecks.
○ CPU speeds not growing as quickly.

● Operating systems overfit for applications due to genericity.
○ E.g. much of the functionality in the data path may not be needed, but cost is paid.

● Solutions are too specialized / disruptive.
○ Kernel-bypass I/O stacks: no multi-tenancy, workload isolation.
○ Dataplane OSs, require re-architecting applications: poor compatibility, too costly.

Three Scenarios

● Latency vs Efficiency
● Isolation
● Dataplane OS

Latency vs Efficiency: Snap

● User space networking stack.
○ Feature velocity (not our focus).
○ Navigates lower latency vs better efficiency.

● ‘Engine’ threads handle packet processing.
● Three scheduling models: Dedicated, Spreading, Compacting.

Snap

● Dedicated: Busy-polling pinned engine thread per-core, no co-location.
● Spreading: Spread work to available idle cores, driven by interrupts.
● Compaction: Spreading for gaining capacity; use queuing delay for SLO

compliance, and densely pack bin-pack work to free capacity.
○ Hybrid optimistic polling + interrupt driven notifications.

Latency vs Efficiency: TAPI

● Jakub’s proposal to realize what Snap’s compacting engines mode do, but for
Linux’s netstack.

● Use of work queues as the execution context; wq items as the unit of
concurrency.

● 3 pinned NAPI kthreads at 30% CPU util. vs 1 wq kthread at 90% CPU util.
● Avoid millisecond-scale latency spikes (say when co-locating NAPI kthreads).

https://people.kernel.org/kuba/napi-updates#:~:text=TAPI%20(work%20in%20progress)

Isolation

● Figure from NetChannel (Fig 4).
● 8 cores in the same NUMA node.
● 1 latency critical thread doing networking, 8 batch threads doing networking.

https://www.cs.cornell.edu/~qizhec/paper/netchannel.pdf

Isolation

● Since threads > cores, L-app may share core with T-app.
● Network stack processing of L-app may be queued behind T-app.
● 37x tail latency inflation.

Dataplane OS

● One central “dispatcher” steering all packets onto “worker” cores.
● Worker cores are applications with data path linked into their address space.
● Worker flow:

○ Busy Poll -> Receive -> Run Request to Completion -> Transmit -> Repeat.
● Use a lean TCP implementation, zero copy.
● Queuing delay as a proxy for capacity crunch, allocate or shrink cores.
● Allocate cores every N us (respond quickly to load spikes).
● Work stealing.

Dataplane OS
Dispatcher PKT PKT PKT PKT

PKT

PKT

PKT

PKT

PKT

Worker 1 Worker 2

CPU 0 CPU 1

Dataplane OS
Dispatcher PKT PKT PKT PKT

PKT

PKT

PKT

PKT

PKT

Worker 1 Worker 2

CPU 0 CPU 1

Dataplane OS
Dispatcher PKT PKT PKT PKT

PKT

PKT

PKT

PKT

PKT

Worker 1 Worker 2 Worker 3

CPU 0 CPU 1 CPU 2

Role of Extensibility

● Reduces burden of experimentation.
● Faster feedback loop: rollout, testing, iteration.
● Adaptive.
● Deployable in production.

Role of Extensibility

● Reduces burden of experimentation.
● Faster feedback loop: rollout, testing, iteration.
● Adaptive.
● Deployable in production.

● Two paths to victory:
○ Experimentation motivates and leads to upstream changes.
○ Deliver benefits through extensions themselves.

Observations

● For each case, very little is changed about functionality.
○ E.g. networking processing logic mostly the same, or reused.

● Individual kernel processing steps remain the same.

● Scheduling of kernel work changes, or the execution context changes.

● Can we have a generic way of performing such modifications to the kernel?

Abstracting computation … safely

● Need a way to represent computation tied to a kernel object.
● Computation may happen at disparate locations in the kernel (in sequence).
● Resources acquired at individual steps may be released by later steps.
● Context and state of computation carried through each step.
● E.g. network Rx processing.

hardirq softirq softirq softirq task

kfree_skballoc_skb ip_rcv tcp_rcv sk_data_ready recv

CPU 0 CPU 1 CPU 1 CPU 1 CPU 2

steering

Fibers

● Sequential abstraction to represent possibly asynchronous work.
● Compiler converts a sequential function into a state machine.

○ Fibers are built on top of coroutines.
○ Mostly try to reuse LLVM’s support in BPF backend as far as implementation goes.

● Captures resources for the lifetime of processing in “fiber state”.
○ This is a well-known benefit, i.e. elimination of shared state.
○ C++ folks will recall shared_ptr<T> proliferation.

● Helps the verifier more than the user.

Yeah, maybe let’s not?

alloc_skb ip/tcp/sk recv

eBPF map

CPU 0 CPU 1 CPU 2

Yeah, maybe let’s not?

alloc_skb ip/tcp/sk recv

eBPF map

CPU 0 CPU 1 CPU 2

Yeah, maybe let’s not?

alloc_skb ip/tcp/sk recv

eBPF map

CPU 0 CPU 1 CPU 2

Yeah, maybe let’s not?

alloc_skb ip/tcp/sk recv

eBPF map

CPU 0 CPU 1 CPU 2

Yeah, maybe let’s not?

alloc_skb ip/tcp/sk recv

eBPF map

CPU 0 CPU 1 CPU 2

Yeah, maybe let’s not?

alloc_skb ip/tcp/sk recv

eBPF map

CPU 0 CPU 1 CPU 2

Solution Sketch: TAPI

● Each frame corresponds to a fiber (since work done maps to each packet).
● TAPI reduced to implementing multiplexing of fibers on kernel threads.
● s/wq item/fiber/g
● s/workqueue/kthread pool/g

● BPF decides assignment of packet processing (i.e. fiber execution) to kernel
threads.

● Work stealing to mitigate load imbalance.
● Collapse work onto same thread, spread to multiple kthreads.

Solution Sketch: Isolation

● One possible solution: processor sharing at packet processing level.
● Fibers can allow interleaving processing.
● Network stack not ready for this yet, but should be possible.
● Preemption doesn’t have to be interrupt driven.
● Can be compiler driven approximation (yield points placed by approximating

quantum). Works well with non-preemptive code.
○ Compiler Interrupts, Concord

● Coroutine switching in order of 10s of ns.

https://dl.acm.org/doi/10.1145/3453483.3454107
https://rishabh246.github.io/files/concord.pdf

Processor Sharing

Napkin Math; FCFS; A, C - Short, L-Critical

SRTF (with Preemption)

Solution Sketch: Dataplane OS

● Just like our example, construct a slim data path where for the data path:
○ Pages registered for ZC per NIC-queue, a. la. AF_XDP or ZC Rx.
○ Possibly do GRO (in BPF).
○ For TCP established state, carve out TCP sock state updates into a kfunc (both recv/send).

● Do not hit socket layer; do not build skb; only update struct tcp_sock.
● Yield to user space for application processing.
● Take over Tx processing.
● Go through qdisc layer (e.g. we still might want bw management).

Solution Sketch: Dataplane OS

int data_path(struct xdp_md *ctx) {

if (bpf_sk_lookup(...)->state != TCP_ESTABLISHED)

return XDP_PASS;

if (bpf_gro_xdp(ctx) // Custom BPF GRO engine

co_return 0;

tcp_rcv_established(ctx); // Returns before sk_data_ready

co_await yield_to_user(); Suspension point

tcp_send(ctx); // Update tcp_sock

co_return enqueue_qdisc(ctx); // We still want host-wide bw management

}

Dataplane OS
Dispatcher PKT PKT PKT PKT

PKT

PKT

PKT

PKT

PKT

Worker 1 Worker 2

CPU 0 CPU 1

Dataplane OS
Dispatcher fiber fiber fiber fiber

fiber

fiber

fiber

fiber

fiber

Worker 1 Worker 2

CPU 0 CPU 1

Cross Section

co_await yield_to_user() co_await fiber()

TxRx

User Code

Cross Section - Batching

co_await yield_to_user() co_await fiber()co_await yield_to_user()

Rx TxRx Rx Tx Tx

User Code

Solution Sketch: Dataplane OS

● What happens if I free the fiber after yield to user space?
○ XDP frame is part of fiber’s state after suspension.
○ So, would be released with the fiber’s destruction.

● What happens if I don’t run the fibers to completion?
○ You have a queue build up, the connection becomes non-responsive.
○ Same as what happens when a server stops reading from its socket.

Necessary, but not sufficient.

● We build upon the kind of functional extensibility eBPF supports.
○ XDP
○ TC
○ sched-ext
○ …

● Changing the structure / form of a subsystem goes hand in hand with
functional extensibility.

Key Takeaways

● Kernel’s logic reused or repurposed.
○ TAPI, Isolation: Networking stack traversal remains the same.
○ Dataplane OS: Exclude unneeded stuff, keep the rest the same.

Key Takeaways

● Kernel’s logic reused or repurposed.
○ TAPI, Isolation: Networking stack traversal remains the same.
○ Dataplane OS: Exclude unneeded stuff, keep the rest the same.

● Fibers abstract kernel’s computation across execution contexts.
○ Use wholesale (TAPI), or pick and choose individual steps (Dataplane OS).
○ Resources acquired or used during execution tied to the fiber’s state.
○ Verifier gains visibility into end-to-end processing, reasons about safety.

Key Takeaways

● Kernel’s logic reused or repurposed.
○ TAPI, Isolation: Networking stack traversal remains the same.
○ Dataplane OS: Exclude unneeded stuff, keep the rest the same.

● Fibers abstract kernel’s computation across execution contexts.
○ Use wholesale (TAPI), or pick and choose individual steps (Dataplane OS).
○ Resources acquired or used during execution tied to the fiber’s state.
○ Verifier gains visibility into end-to-end processing, reasons about safety.

● Changes how things are scheduled, executed, preempted.
○ Computation when data flows through the system abstracted as an entity: fibers.
○ Driven to completion by a real schedulable entity: threads.
○ Can be preempted, perform symmetric transfer to other fibers, etc.

Questions?

