eBPF-specialized Kernel for

/O Intensive Applications
Kumar Kartikeya Dwivedi, Rishabh lyer, Sanidhya Kashyap

Before we begin...

e Any misrepresentation of other work is my mistake / responsibility.
e I'm looking for feedback, these are early ideas.
e Please poke holes!

Problem Statement

e Growing hardware capacity and speed is highlighting host CPU bottlenecks.
o CPU speeds not growing as quickly.

Problem Statement

e Growing hardware capacity and speed is highlighting host CPU bottlenecks.
o CPU speeds not growing as quickly.

e Operating systems overfit for applications due to genericity.
o E.g. much of the functionality in the data path may not be needed, but cost is paid.

Problem Statement

e Growing hardware capacity and speed is highlighting host CPU bottlenecks.
o CPU speeds not growing as quickly.

e Operating systems overfit for applications due to genericity.
o E.g. much of the functionality in the data path may not be needed, but cost is paid.

e Solutions are too specialized / disruptive.

o Kernel-bypass I/O stacks: no multi-tenancy, workload isolation.
o Dataplane OSs, require re-architecting applications: poor compatibility, too costly.

Three Scenarios

e Latency vs Efficiency
e Isolation
e Dataplane OS

Latency vs Efficiency: Snap

e User space networking stack.

o Feature velocity (not our focus).
o Navigates lower latency vs better efficiency.

e ‘Engine’ threads handle packet processing.
e Three scheduling models: Dedicated, Spreading, Compacting.

Snap

e Dedicated: Busy-polling pinned engine thread per-core, no co-location.
e Spreading: Spread work to available idle cores, driven by interrupts.
e Compaction: Spreading for gaining capacity; use queuing delay for SLO
compliance, and densely pack bin-pack work to free capacity.
o Hybrid optimistic polling + interrupt driven notifications.

scheduling latency
CPU CPU
scheduling mode resources median tail efficiency visualization

dedicating cores static 0-1us 0*-100+us poor - EE Elj
spreading engines dynamic 3-10us 10-30**ps good HH:H_H
compacting engines dynamic 0-5us 50-100**us | excellent E Eli EE

* Ous tail scheduling latency under “dedicating cores” possible only when running a single engine per core
** assumes minimal tail latency impact due to low-power sleep states and/or possible preemption failure

Latency vs Efficiency: TAPI

e Jakub’s proposal to realize what Snap’s compacting engines mode do, but for
Linux’s netstack.

e Use of work queues as the execution context; wq items as the unit of
concurrency.

e 3 pinned NAPI kthreads at 30% CPU util. vs 1 wq kthread at 90% CPU util.

e Avoid millisecond-scale latency spikes (say when co-locating NAPI kthreads).

> Actually, I remembered it wrong. It does seem workqueue is doing
> better on latencies. But cpu/op wise, kthread seems to be a bit
> better.

https://people.kernel.org/kuba/napi-updates#:~:text=TAPI%20(work%20in%20progress)

Isolation

e Figure from NetChannel (Fig 4).
e 8 cores in the same NUMA node.
e 1 latency critical thread doing networking, 8 batch threads doing networking.

T T

Linux Latency BSOS -
Linux + Prioritization Latency &~"X1 a
= Linux Throughput —+— 6
3 Linux + Prioritization Throughput =—+— vy
> 3
g 2000 100 2
g =
S 1500 9 o
= <
& 1000 - \ ------- 180 E
500 : § - 70 |2

0 A\ 60

Isolated Interference

(a) P99.9 latency (us) and total throughput (Gbps)

https://www.cs.cornell.edu/~qizhec/paper/netchannel.pdf

Isolation

e Since threads > cores, L-app may share core with T-app.
e Network stack processing of L-app may be queued behind T-app.
e 37x tail latency inflation.

T T
Linux Latency BSOS -
Linux + Prioritization Latency &~"X1 a
= Linux Throughput —+— 6
3 Linux + Prioritization Throughput =—+— vy
> =]
g 2000 100 2
g =
S 1500 9 o
= <
& 1000 - \ ------- 180 E
500 : \ - 70 |2

R\

0 60

Isolated Interference

(a) P99.9 latency (us) and total throughput (Gbps)

Dataplane OS

One central “dispatcher” steering all packets onto “worker” cores.
Worker cores are applications with data path linked into their address space.

Worker flow:
o Busy Poll -> Receive -> Run Request to Completion -> Transmit -> Repeat.

Use a lean TCP implementation, zero copy.

Queuing delay as a proxy for capacity crunch, allocate or shrink cores.
Allocate cores every N us (respond quickly to load spikes).

Work stealing.

Dataplane OS

Dispatcher| ~

/

PKT

PKT

PKT

PKT

PKT

CPUO

CPU 1

PKT

PKT

PKT

PKT

Dataplane OS

Dispatcher| ~

/

PKT

PKT

PKT

PKT

PKT

CPUO

CPU 1

PKT

PKT

PKT

PKT

Dataplane OS

G

Dispatcher| ~

/

PKT

PKT

T~

M\

PKT

PKT

PKT

PKT

PKT PKT

CPUO

CPU 1 CPU 2

Role of Extensibility

Reduces burden of experimentation.

Faster feedback loop: rollout, testing, iteration.
Adaptive.

Deployable in production.

Role of Extensibility

Reduces burden of experimentation.

Faster feedback loop: rollout, testing, iteration.
Adaptive.

Deployable in production.

e Two paths to victory:
o Experimentation motivates and leads to upstream changes.
o Deliver benefits through extensions themselves.

Observations
e For each case, very little is changed about functionality.
o E.g. networking processing logic mostly the same, or reused.
e Individual kernel processing steps remain the same.

e Scheduling of kernel work changes, or the execution context changes.

e Can we have a generic way of performing such modifications to the kernel?

Abstracting computation ... safely

Need a way to represent computation tied to a kernel object.
Computation may happen at disparate locations in the kernel (in sequence).
Resources acquired at individual steps may be released by later steps.

Context and state of computation carried through each step.

E.g. network Rx processing.

softirq

softirq

task

tcp_recv

» sk_data_ready

recv

—kfree_skb

steering
hardirq softirq
alloc_skb ip_rcv
CPUO CPU 1

CPU 1

CPU 1

CPU 2

Fibers

e Sequential abstraction to represent possibly asynchronous work.

e Compiler converts a sequential function into a state machine.

o Fibers are built on top of coroutines.
o Mostly try to reuse LLVM'’s support in BPF backend as far as implementation goes.

e Captures resources for the lifetime of processing in “fiber state”.

o This is a well-known benefit, i.e. elimination of shared state.
o C++ folks will recall shared_ptr<T> proliferation.

e Helps the verifier more than the user.

Yeah, maybe let’s not?

eBPF map

alloc_skb

CPUO

ip/tcp/sk

CPU 1

recv

CPU 2

Yeah, maybe let’s not?

CPUO

eBPF map

ip/tcp/sk

CPU 1

recv

CPU 2

Yeah, maybe let’s not?

alloc_skb

CPUO

/

eBPF map

ip/tcp/sk

CPU 1

recv

CPU 2

Yeah, maybe let’s not?

alloc_skb

CPUO

eBPF map

-

CPU 1

recv

CPU 2

Yeah, maybe let’s not?

eBPF map

alloc_skb

CPUO

ip/tcp/sk

CPU 1

recv

CPU 2

Yeah, maybe let’s not?

eBPF map

alloc_skb

S

CPUO

ip/tcp/sk

CPU 1

CPU 2

Solution Sketch: TAPI

Each frame corresponds to a fiber (since work done maps to each packet).
TAPI reduced to implementing multiplexing of fibers on kernel threads.
s/wq item/fiber/g

s/workqueue/kthread pool/g

e BPF decides assignment of packet processing (i.e. fiber execution) to kernel
threads.

e \Work stealing to mitigate load imbalance.

e Collapse work onto same thread, spread to multiple kthreads.

Solution Sketch: Isolation

One possible solution: processor sharing at packet processing level.

Fibers can allow interleaving processing.

Network stack not ready for this yet, but should be possible.

Preemption doesn’t have to be interrupt driven.

Can be compiler driven approximation (yield points placed by approximating

quantum). Works well with non-preemptive code.
o Compiler Interrupts, Concord

e Coroutine switching in order of 10s of ns.

https://dl.acm.org/doi/10.1145/3453483.3454107
https://rishabh246.github.io/files/concord.pdf

Processor Sharing

Napkin Math; FCFS; A, C - Short, L-Critical

Output
Job Arrival Time
B 0
A 20
C 40
D 50

Burst Time

50

10

10

50

Gantt Chart
A | C

D

50 60 70 120

Finish Time
50

60

70

120

Average

Turnaround Time

50

40

30

70

190/ 4 =475

FCFS
Waiting Time
0
30
20
20
70 /4 =175

SRTF (with Preemption)

Output SRTF

Gantt Chart

B|A|B|C|B|D
0O 20 30 40 50 70 120

Job Arrival Time Burst Time Finish Time Turnaround Time Waiting Time
B 0 50 70 70 20

A 20 10 30 10 0

(62 40 10 50 10 0

D 50 50 120 70 20

Average 160/4 =40 40/4 =10

Solution Sketch: Dataplane OS

e Just like our example, construct a slim data path where for the data path:

o Pages registered for ZC per NIC-queue, a. la. AF_XDP or ZC RXx.
o Possibly do GRO (in BPF).
o For TCP established state, carve out TCP sock state updates into a kfunc (both recv/send).

Do not hit socket layer; do not build skb; only update struct tcp_sock.
Yield to user space for application processing.

Take over Tx processing.

Go through qdisc layer (e.g. we still might want bw management).

Solution Sketch: Dataplane OS

int data_path(struct xdp_md *ctx) {
if (bpf_sk lookup(...)->state != TCP_ESTABLISHED)
return XDP_PASS;
if (bpf_gro xdp(ctx) // Custom BPF GRO engine
co_return 9;
tcp_rcv_established(ctx); // Returns before sk _data ready

co_await yield to_user(); -« Suspension point

tcp_send(ctx); // Update tcp_sock

co_return enqueue qdisc(ctx); // We still want host-wide bw management

Dataplane OS

Dispatcher| ~

/

PKT

PKT

PKT

PKT

PKT

CPUO

CPU 1

PKT

PKT

PKT

PKT

Dataplane OS

Dispatcher| ~
fiber
fiber fiber
fiber fiber

CPUO CPU 1

fiber

fiber

fiber

fiber

Cross Section

Rx

co_await yield_to_user()

Tx

User Code

co_await fiber()

Cross Section - Batching

Rx

Rx — Rx

co_await yield_to_user()

Tx —»

Tx

Tx

User Code

co_await fiber()

Solution Sketch: Dataplane OS

e \What happens if | free the fiber after yield to user space?
o XDP frame is part of fiber’s state after suspension.
o So, would be released with the fiber’s destruction.

e \What happens if | don'’t run the fibers to completion?

o You have a queue build up, the connection becomes non-responsive.
o Same as what happens when a server stops reading from its socket.

Necessary, but not sufficient.

e \We build upon the kind of functional extensibility eBPF supports.
XDP

TC

sched-ext

o O O O

e Changing the structure / form of a subsystem goes hand in hand with
functional extensibility.

Key Takeaways

e Kernel’s logic reused or repurposed.

o TAPI, Isolation: Networking stack traversal remains the same.
o Dataplane OS: Exclude unneeded stuff, keep the rest the same.

Key Takeaways

e Kernel’s logic reused or repurposed.

o TAPI, Isolation: Networking stack traversal remains the same.
o Dataplane OS: Exclude unneeded stuff, keep the rest the same.

e Fibers abstract kernel's computation across execution contexts.
o Use wholesale (TAPI), or pick and choose individual steps (Dataplane OS).
o Resources acquired or used during execution tied to the fiber’s state.
o Verifier gains visibility into end-to-end processing, reasons about safety.

Key Takeaways

e Kernel’s logic reused or repurposed.

o TAPI, Isolation: Networking stack traversal remains the same.
o Dataplane OS: Exclude unneeded stuff, keep the rest the same.

e Fibers abstract kernel's computation across execution contexts.
o Use wholesale (TAPI), or pick and choose individual steps (Dataplane OS).
o Resources acquired or used during execution tied to the fiber’s state.
o Verifier gains visibility into end-to-end processing, reasons about safety.

e Changes how things are scheduled, executed, preempted.
o Computation when data flows through the system abstracted as an entity: fibers.
o Driven to completion by a real schedulable entity: threads.
o Can be preempted, perform symmetric transfer to other fibers, etc.

Questions?

