Google

Lessons from the buzz

What have we learned from fuzzing the eBPF

verifier

< PSE -CVR > Juan Jose Lopez Jaimez Sept 2024

$ whoami

e Software developer @ Google Montreal
e Cloud Vulnerability Research

e Into fuzzing and currently going through a Kernel hacking phase

Agenda

01

02

03

04

05

Introduction

Why Buzzer?

What is Buzzer?

What have we learned so far?

Future research

Why Buzzer?

e The eBPF verifier is complex, so is finding bugs in it kernel/bpf/verifier.c @ 6.11 rc7
o ~20klines of code @ latestrelease -7 77 TR R A A ;
o The verifier has a complex purpose: g%ggg if (! 15-2:;;‘:’)(anlock
m Keep track. of thg sta.te of a' bpf program at 21806 vree(env—>in;n_aux_
each possible point (including branches) 21807 err_free env:
m Keep track of helper functions, kfuncs... etc 21808 kfree(env);
m Prove that a program safe... is hard 21809 return ret;
e Other people have explored fuzzing ebpf, buzzer was 21810 }
inspired by Simon Scannell’s blog post @
https://scannell.io/posts/ebpf-fuzzing/ \

e Provide an alternative way to play with eBPF at a “low” (i.e
bytecode) level

https://scannell.io/posts/ebpf-fuzzing/

Why Buzzer?

e But unprivileged users cannot load eBPF programs now, so why bother doing research on eBPF?
o Attackers can still get a foothold in places with CAP_BPF (a process, a container, etc.)
o A secure verifier means we have a secure eBPF, paving the way for the future
o It's fun! (and exploits are easier to write)
e What about syzkaller or other fuzzers? Why reinvent the wheel?
o Syzkaller is amazing! We actually have plans to integrate buzzer with it
m We aimed to look for a different set of bugs (logical bugs in verification vs memory
corruption)

Why Buzzer?

e A bugin the verifier means a potential path for code execution in the kernel

> PREEMPT IC Tue Jun 4

What is Buzzer?

A
e https://github.com/google/buzzer Biiezer
e A fuzzer for the eBPF verifier that aims to: m’—/
o Find logical vulnerabilities in the verifier ~ -
- We don’t focus on finding memory { FFI Unit J Control Unit { Metrics Unit }
corruption bugs, Syzkaller does a)
great job at that already. 5 Runs
o Provide tools to easily write eBPF syscalls) el
programs at the bytecode level “Strategy’ session
o Extend the research that other people 100 oad .
have done in fuzzing ebpf Hhecige syscal
(https://scannell.io/posts/ebpf-fuzzing/)

Kernel Space

Verifier

https://github.com/google/buzzer
https://scannell.io/posts/ebpf-fuzzing/

What is Buzzer? - Strategies

A strategy:
1) Isresponsible for generating ebpf
programs.

2) Decides how to act based on
verification verdicts.

3) Determines when a possible bug
has happened

A strategy decides what type of programs
to generate and how to assess the results
of the verification/execution.

The rest of buzzer provides tools to
interact with eBPF and visualize metrics.

ogle

What is Buzzer? - Playground strategy

What is Buzzer? - BTF Support

Recently thanks to the work of our
Intern, Alanis Negroni, we have BTF
support.

This means that we can now generate
eBPF programs that are accompanied
by BTF information, giving us access
to a lot of new features (e.g function
pointers and kfuncs)

Google

What is Buzzer? Coverage Visualization

2970 static int check_subprogs(struct bpf_verifier_env xenv)

2971 {

2972 int i, subprog_start, subprog_end, off, cur_subprog = 0;

2973 struct bpf_subprog_info *subprog = env->subprog_info;

2974 struct bpf_insn xinsn = env->prog->insnsi;

2975 int insn_cnt = env->prog->len;

2976

2977 /* now check that all jumps are within the same subprog */

2978 subprog_start = subproglcur_subprogl.start;

2979 subprog_end = subproglcur_subprog + 1].start;

2980 for (i = 0; i < insn_cnt; i++) {

2981 u8 code = insn[i].code;

2982

2983 if (code == (BPF_JMP | BPF_CALL) &&

2984 insn[il.src_reg == 0 &&

2985 insn[i].imm == BPF_FUNC_tail_call) {

2986 subprog[cur_subprog]l.has_tail_call = true;

2987 subprogl[cur_subprog].tail_call_reachable = true;
2988 }

2989 if (BPF_CLASS(code) == BPF_LD &&

2990 (BPF_MODE (code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
2991 subprog[cur_subprogl.has_ld_abs = true;

2992 if (BPF_CLASS(code) != BPF_JMP & BPF_CLASS(code) != BPF_JMP32)
2993 goto next;

2994 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
2995 goto next;

2996 if (code == (BPF_JMP32 | BPF_JA))

2997 off = i + insn[i].imm + 1;

2998 else

2999 off = i + insn[i].off + 1;

3000 if (off < subprog_start || off >= subprog_end) {

3001 verbose(env, "jump out of range from insn %d to %d\n", i, off);
3002 return -EINVAL;

2002 1

What is Buzzer? Coverage Visualization

Coverage over time -O- Coverage

2,100
1,800
1,500
1,200
900
600
300

0
2024-09-13T20:43:42.033382014Z 2024-09-13T20:43:48.498640135Z 2024-09-13T20:44:42.951359028Z

What have we learned; CVE-2023-2163

6 = 0x400
7=0
8=0

r9 = 0x80000000

e Bugin the verifier’s branch pruning = P
o Details are covered in our blog post at
https://bughunters.google.com/blog/6303226026131456/a-dee ®
p-dive-into-cve-2023-2163-how-we-found-and-fixed-an-ebpf o cod |
-linux-kernel-vulnerability
o TL;DR: Buzzer found that in certain cases, the verifier would fail
to mark the preciseness of some registers, leading to unsafe

branches being pruned for verification, this could lead to code
execution at kernel level. —

Epilogue

https://bughunters.google.com/blog/6303226026131456/a-deep-dive-into-cve-2023-2163-how-we-found-and-fixed-an-ebpf-linux-kernel-vulnerability
https://bughunters.google.com/blog/6303226026131456/a-deep-dive-into-cve-2023-2163-how-we-found-and-fixed-an-ebpf-linux-kernel-vulnerability
https://bughunters.google.com/blog/6303226026131456/a-deep-dive-into-cve-2023-2163-how-we-found-and-fixed-an-ebpf-linux-kernel-vulnerability

What have we learned; CVE-2023-2163

e How was this bug found?
o Buzzer has a strategy where it generates random jmp and alu Do

Operations m;z:g&(i%t:oo
o Then before exit it adds a register to a map pointer and tries to

write to it... ®
o If when we try to read that value from user space it is not there, A
then we know a write out of bounds might have happened

Epilogue

What have we learned; CVE-2023-2163

e A bit more details on the bug

o

The verifier explores all possible branches, taking the
false branch first

In the image on the right, epilogue will execute a pointer
arithmetic operation with ré

Since Ré6 is set to O, it will conclude that this path
(1:2:3:4:5:6) is safe, and it will mark ré as precise
However, r9 contributes to the value ré can take (at 4)
and the verifier did not mark it as precise too

At this point the verifier will mark all other branches as
equivalent to 1:2:3:4:5:6 and prune them

6 = 0x400
7=0
=0

r9 = 0x80000000
6 %= 0x401

\———T——/
@ | ®
if ré <=9 goto 4 ';9:21

/)
® (® ‘
if r6 <=r9 goto 6 r6=0

"iIIIIIIIII
Epilogue

What have we learned; CVE-2023-2163

e After concluding (1:2:3:4:5:6) is safe, the verifier will prune (skip)
all other paths it considers “equivalent”, in this case it is all
other possible paths.

e The path that we end up taking at run time is 1:2:4:6 and since
ré is not set to O we can do arbitrary pointer arithmetic!

o Again this happens because R9 was not set as
contributing to the preciseness of R6, had that been the
case then the verifier would not mark all other states as
equivalent

6 = 0x400
7=0
=0

r9 = 0x80000000
6 %= 0x401

\———T——/
——
@ | ®
if ré <=9 goto 4 ';9:21

O)

if ré <=r9 goto 6

Epilogue

What have we learned; CVE-2023-2163

6 = 0x400
7=0
8=0

r9 = 0x80000000
6 %= 0x401

e What did we learn from this?

o The verifier has a very complex job to do ©)
o This bug would have been difficult to spot via manual analysis g

m Due to the complexity of state tracking
o Branch pruning might remain a good source for vulnerabilities,
although we are yet to find another bug like this one.

ifré6 <=r9 goto 6

Epilogue

What have we learned: CVE-2024-41003

TL;DR a bug was introduced in kernel 6.8 where it

was possible to corrupt the verifier register limit
tracking during branch operations

o

Details at:
https://github.com/google/security-resear

ch/security/advisories/GHSA-hfgc-63c7-rj

of

Instruction Verify limits Run time actual
assumption value

R1 = [s32_min, s32_max] | Ox7FFFFFFF

read_from_map()

R1|=2 [0x80000002, Ox7FFFFFFF
s32_max]

If R1 1= OX7FFFFFFd | [0x80000002, Ox7FFFFFFF

(True branch) Ox7FFFFFFE]

R1 -=0x7FFFFFFO [0x80000002, OXE] OxF

If R1 s>= OXE (true [OXE, OXE] == OXE OxF

branch)

R1-= OxE 0x0 0x1

https://github.com/google/security-research/security/advisories/GHSA-hfqc-63c7-rj9f
https://github.com/google/security-research/security/advisories/GHSA-hfqc-63c7-rj9f
https://github.com/google/security-research/security/advisories/GHSA-hfqc-63c7-rj9f

What have we learned: CVE-2024-41003

e Three key points to make this bug happen:

1) Inthe program on the right it is
mathematically impossible to fall through
the false branch, the second bit will always
be set. So R1 can never be Ox7ffffffd (d ==
1101)

The verifier will nonetheless explore this
false branch.

Google

What have we learned: CVE-2024-41003

e Three key points to make this bug happen: R1 (reg1) Constant (reg2)
2) When analyzing the false branch, the
verifier creates a “fake” register with the (2, OXFFFFFFFD) (6x7FFFFFFD, @)
constant value of the condition. Then it

computes an intersect of the var_off of

both registers and updates the value for itruct tnum tnum_intersect(struct tnum a, struct tnum b)
both of them. u64 v, mu:
v = a.value | b.value;
For this particular case, the result is mu = a.mask & b.mask;
(OX7FFFFEFF, 0x0) | return TNUM(v & ~mu, mu);
3

So now the verifier thinks that in the false branch, both R1
and the Fake register (constant) have a value of s32_max.
t = tnum_intersect(tnum_subreg(regl->var_off), tnum_subreg(reg2->var_off));

regl->var_off = tnum_with_subreg(regl->var_off, t);
reg2—>var_off = tnum_with_subreg(reg2->var_off, t);

What have we learned: CVE-2024-41003

Three key points to make this bug happen:

3) The false branch is mathematically
impossible, so the program should be safe,
right? The true branch will always be
followed.

For the true branch, the verifier also uses a
“fake” register initialized to the constant
value of the condition...

But both the fake register for the false and
true branch point to the same
“fake"register.

So now we can influence what the verifier
thinks of the true branch...

- else /* BPF_SRC(insn->code) == BPF
err = reg_set_min_max(env,

if (err)

Same fake
register

= 3, 7 -
&other_branch_regs [insn->dst_reg],
src_reg /x \fake one %/,

dst_reg, src_reg /x same fake one */,
opcode, is_jmp32);

What have we learned: CVE-2024-41003

e Three key points to make this bug happen: regl->u32_max_value——;
3) .. And when the true branch is processed, if (regl->s32_min_value == (s32)val)
if s32_max_value of the register is equal to regl->s32_min_value++;
the constant of the condition, it decreases if (regl->s32_max_value == (s32)val)
said max by 1 regl->s32_max_value——;
lse {

if (regl->umin_value == (u64)val)

What have we learned: CVE-2024-41003

e What did we learn from this?

o

A simple off by one in the limit tracking of
the verifier is enough to write an LPE
exploit!

The evolving nature of software opens the
possibility of new bugs in well understood
areas.

When fuzzing the verifier, monitoring the
logs is also a good source of information
A big, yet to be fully solved, problem in
buzzer is comparing the verifier’s
assumptions vs the run time actual
events.

Instruction Verify limits Run time actual
assumption value

R1 = [s32_min, s32_max] | Ox7FFFFFFF

read_from_map()

R1|=2 [0x80000002, Ox7FFFFFFF
s32_max]

If R1 1= OX7FFFFFFd | [0x80000002, Ox7FFFFFFF

(True branch) Ox7FFFFFFE]

R1 -=0x7FFFFFFO [0x80000002, OXE] OxF

If R1 s>= OXE (true [OXE, OXE] == OXE OxF

branch)

R1-= OxE 0x0 0x1

Future research

e How to extract the verifier’s assumptions of the eBPF registers and compare
them with what actually goes on at runtime?

e Expand buzzer to support kfuncs and other helper functions: Alanis Negroni
added support for BTF, so we can now have access to more eBPF features

e Better coverage guided fuzzing

e Fuzzing eBPF on Windows? (once support for it lands)

