
Proprietary + Confidential

Juan Jose Lopez Jaimez Sept 2024PSE -CVR

Lessons from the buzz
What have we learned from fuzzing the eBPF

verifier

Proprietary + Confidential

● Software developer @ Google Montreal

● Cloud Vulnerability Research

● Into fuzzing and currently going through a Kernel hacking phase

$ whoami

Proprietary + Confidential

Introduction

Why Buzzer?

What is Buzzer?

What have we learned so far?

Future research

01

02

03

04

05

Agenda

Proprietary + Confidential

● The eBPF verifier is complex, so is finding bugs in it
○ ~20k lines of code @ latest release
○ The verifier has a complex purpose:

■ Keep track of the state of a bpf program at
each possible point (including branches)

■ Keep track of helper functions, kfuncs… etc
■ Prove that a program safe… is hard

● Other people have explored fuzzing ebpf, buzzer was
inspired by Simon Scannell’s blog post @
https://scannell.io/posts/ebpf-fuzzing/

● Provide an alternative way to play with eBPF at a “low” (i.e
bytecode) level

Why Buzzer?

kernel/bpf/verifier.c @ 6.11 rc7

https://scannell.io/posts/ebpf-fuzzing/

Proprietary + Confidential

● But unprivileged users cannot load eBPF programs now, so why bother doing research on eBPF?
○ Attackers can still get a foothold in places with CAP_BPF (a process, a container, etc.)
○ A secure verifier means we have a secure eBPF, paving the way for the future
○ It’s fun! (and exploits are easier to write)

● What about syzkaller or other fuzzers? Why reinvent the wheel?
○ Syzkaller is amazing! We actually have plans to integrate buzzer with it

■ We aimed to look for a different set of bugs (logical bugs in verification vs memory
corruption)

Why Buzzer?

Proprietary + Confidential

● A bug in the verifier means a potential path for code execution in the kernel

Why Buzzer?

Proprietary + Confidential

● https://github.com/google/buzzer
● A fuzzer for the eBPF verifier that aims to:

○ Find logical vulnerabilities in the verifier
■ We don’t focus on finding memory

corruption bugs, Syzkaller does a
great job at that already.

○ Provide tools to easily write eBPF
programs at the bytecode level

○ Extend the research that other people
have done in fuzzing ebpf
(https://scannell.io/posts/ebpf-fuzzing/)

What is Buzzer?

https://github.com/google/buzzer
https://scannell.io/posts/ebpf-fuzzing/

Proprietary + Confidential

What is Buzzer? - Strategies
// StrategyInterface contains all the methods that a fuzzing strategy should
// implement.
type Strategy interface {

// GenerateProgram should return the instructions to feed the verifier.
GenerateProgram(ffi *FFI) (*pb.Program, error)

// OnVerifyDone process the results from the verifier. Here the strategy
// can also tell the fuzzer to continue with execution by returning true
// or start over and generate a new program.
OnVerifyDone(ffi *FFI, verificationResult *fpb.ValidationResult) bool

// OnExecuteDone should validate if the program behaved like the
// verifier expected, if that was not the case it should return false.
OnExecuteDone(ffi *FFI, executionResult *fpb.ExecutionResult) bool

// OnError is used to determine if the fuzzer should continue on errors.
// true represents continue, false represents halt.
OnError(e error) bool

// IsFuzzingDone if true, buzzer will break out of the main fuzzing loop
// and return normally.
IsFuzzingDone() bool

// Name returns the name of the current strategy to be able
// to select it with the command line flag.
Name() string

}

A strategy:
1) Is responsible for generating ebpf

programs.
2) Decides how to act based on

verification verdicts.
3) Determines when a possible bug

has happened

A strategy decides what type of programs
to generate and how to assess the results
of the verification/execution.

The rest of buzzer provides tools to
interact with eBPF and visualize metrics.

Proprietary + ConfidentialWhat is Buzzer? - Playground strategy

func (pg *Playground) GenerateProgram(ffi *units.FFI) (*pb.Program, error) {

insn, err := InstructionSequence(
Mov(R0, 0),
Exit(),

)
if err != nil {

return nil, err
}

 …
}

func (pg *Playground) OnVerifyDone(ffi *units.FFI, verificationResult *fpb.ValidationResult) bool {
fmt.Println(verificationResult.VerifierLog)
pg.isFinished = true
return true

}

func (cv *CoverageBased) OnVerifyDone(ffi *units.FFI, verificationResult *fpb.ValidationResult) bool {
 …

for _, addr := range verificationResult.CoverageAddress {
…

Instructions can be written in
an assembly way

Strategies can have access to
things like verifier log and
coverage metrics

Proprietary + Confidential

What is Buzzer? - BTF Support

Recently thanks to the work of our
Intern, Alanis Negroni, we have BTF
support.

This means that we can now generate
eBPF programs that are accompanied
by BTF information, giving us access
to a lot of new features (e.g function
pointers and kfuncs)

types := []*btfpb.BtfType{}

// 1: Func_Proto
types = append(types, &btfpb.BtfType{

NameOff: 0x0,
Info: &btfpb.TypeInfo{

Vlen: 0,
Kind: btfpb.BtfKind_FUNCPROTO,
KindFlag: false,

},
SizeOrType: 0x0,
Extra: &btfpb.BtfType_Empty{

Empty: &btfpb.Empty{},
},

})

// 2: Func
types = append(types, &btfpb.BtfType{

NameOff: 0x1,
Info: &btfpb.TypeInfo{

Vlen: 0,
Kind: btfpb.BtfKind_FUNC,
KindFlag: false,

},
SizeOrType: 0x01,
Extra: &btfpb.BtfType_Empty{

Empty: &btfpb.Empty{},
},

})

Proprietary + Confidential

What is Buzzer? Coverage Visualization

Proprietary + Confidential

What is Buzzer? Coverage Visualization

Proprietary + Confidential

● Bug in the verifier’s branch pruning
○ Details are covered in our blog post at

https://bughunters.google.com/blog/6303226026131456/a-dee
p-dive-into-cve-2023-2163-how-we-found-and-fixed-an-ebpf
-linux-kernel-vulnerability

○ TL;DR: Buzzer found that in certain cases, the verifier would fail
to mark the preciseness of some registers, leading to unsafe
branches being pruned for verification, this could lead to code
execution at kernel level.

What have we learned: CVE-2023-2163

https://bughunters.google.com/blog/6303226026131456/a-deep-dive-into-cve-2023-2163-how-we-found-and-fixed-an-ebpf-linux-kernel-vulnerability
https://bughunters.google.com/blog/6303226026131456/a-deep-dive-into-cve-2023-2163-how-we-found-and-fixed-an-ebpf-linux-kernel-vulnerability
https://bughunters.google.com/blog/6303226026131456/a-deep-dive-into-cve-2023-2163-how-we-found-and-fixed-an-ebpf-linux-kernel-vulnerability

Proprietary + Confidential

● How was this bug found?
○ Buzzer has a strategy where it generates random jmp and alu

operations
○ Then before exit it adds a register to a map pointer and tries to

write to it…
○ If when we try to read that value from user space it is not there,

then we know a write out of bounds might have happened

What have we learned: CVE-2023-2163

Proprietary + Confidential

● A bit more details on the bug
○ The verifier explores all possible branches, taking the

false branch first
○ In the image on the right, epilogue will execute a pointer

arithmetic operation with r6
○ Since R6 is set to 0, it will conclude that this path

(1:2:3:4:5:6) is safe, and it will mark r6 as precise
○ However, r9 contributes to the value r6 can take (at 4)

and the verifier did not mark it as precise too
○ At this point the verifier will mark all other branches as

equivalent to 1:2:3:4:5:6 and prune them

What have we learned: CVE-2023-2163

Proprietary + Confidential

● After concluding (1:2:3:4:5:6) is safe, the verifier will prune (skip)
all other paths it considers “equivalent”, in this case it is all
other possible paths.

● The path that we end up taking at run time is 1:2:4:6 and since
r6 is not set to 0 we can do arbitrary pointer arithmetic!

○ Again this happens because R9 was not set as
contributing to the preciseness of R6, had that been the
case then the verifier would not mark all other states as
equivalent

What have we learned: CVE-2023-2163

Proprietary + Confidential

● What did we learn from this?
○ The verifier has a very complex job to do
○ This bug would have been difficult to spot via manual analysis

■ Due to the complexity of state tracking
○ Branch pruning might remain a good source for vulnerabilities,

although we are yet to find another bug like this one.

What have we learned: CVE-2023-2163

Proprietary + Confidential

● TL;DR a bug was introduced in kernel 6.8 where it
was possible to corrupt the verifier register limit
tracking during branch operations

○ Details at:
https://github.com/google/security-resear
ch/security/advisories/GHSA-hfqc-63c7-rj
9f

What have we learned: CVE-2024-41003

Instruction Verify limits
assumption

Run time actual
value

R1 =
read_from_map()

[s32_min, s32_max] 0x7FFFFFFF

R1 |= 2 [0x80000002,
s32_max]

0x7FFFFFFF

If R1 != 0x7FFFFFFd
(True branch)

[0x80000002,
0x7FFFFFFE]

0x7FFFFFFF

R1 -=0x7FFFFFF0 [0x80000002, 0xE] 0xF

If R1 s>= 0xE (true
branch)

[0xE, 0xE] == 0xE 0xF

R1 -= 0xE 0x0 0x1

https://github.com/google/security-research/security/advisories/GHSA-hfqc-63c7-rj9f
https://github.com/google/security-research/security/advisories/GHSA-hfqc-63c7-rj9f
https://github.com/google/security-research/security/advisories/GHSA-hfqc-63c7-rj9f

Proprietary + Confidential

● Three key points to make this bug happen:
1) In the program on the right it is

mathematically impossible to fall through
the false branch, the second bit will always
be set. So R1 can never be 0x7ffffffd (d ==
1101)

The verifier will nonetheless explore this
false branch.

What have we learned: CVE-2024-41003

R1 = read_from_map() // The verifier knows nothing about R1

R1 |= 2 // The verifier knows that bit 2 is set but knows
nothing about the rest

if R1 != 0x7ffffffd goto b1:
Exit // False branch

b1:

R0 = 0 // True branch
Exit

Proprietary + Confidential

● Three key points to make this bug happen:
2) When analyzing the false branch, the

verifier creates a “fake” register with the
constant value of the condition. Then it
computes an intersect of the var_off of
both registers and updates the value for
both of them.

For this particular case, the result is
(0x7FFFFFFF, 0x0)

So now the verifier thinks that in the false branch, both R1
and the Fake register (constant) have a value of s32_max.

What have we learned: CVE-2024-41003

R1 (reg1) Constant (reg2)

(2, 0xFFFFFFFD) (0x7FFFFFFD, 0)

Proprietary + Confidential

● Three key points to make this bug happen:
3) The false branch is mathematically

impossible, so the program should be safe,
right? The true branch will always be
followed.

For the true branch, the verifier also uses a
“fake” register initialized to the constant
value of the condition…

But both the fake register for the false and
true branch point to the same
“fake”register.

So now we can influence what the verifier
thinks of the true branch…

What have we learned: CVE-2024-41003

Same fake
register

Proprietary + Confidential

● Three key points to make this bug happen:
3) … And when the true branch is processed,

if s32_max_value of the register is equal to
the constant of the condition, it decreases
said max by 1

What have we learned: CVE-2024-41003

Proprietary + Confidential

● What did we learn from this?
○ A simple off by one in the limit tracking of

the verifier is enough to write an LPE
exploit!

○ The evolving nature of software opens the
possibility of new bugs in well understood
areas.

○ When fuzzing the verifier, monitoring the
logs is also a good source of information

○ A big, yet to be fully solved, problem in
buzzer is comparing the verifier’s
assumptions vs the run time actual
events.

What have we learned: CVE-2024-41003

Instruction Verify limits
assumption

Run time actual
value

R1 =
read_from_map()

[s32_min, s32_max] 0x7FFFFFFF

R1 |= 2 [0x80000002,
s32_max]

0x7FFFFFFF

If R1 != 0x7FFFFFFd
(True branch)

[0x80000002,
0x7FFFFFFE]

0x7FFFFFFF

R1 -=0x7FFFFFF0 [0x80000002, 0xE] 0xF

If R1 s>= 0xE (true
branch)

[0xE, 0xE] == 0xE 0xF

R1 -= 0xE 0x0 0x1

Proprietary + Confidential

● How to extract the verifier’s assumptions of the eBPF registers and compare
them with what actually goes on at runtime?

● Expand buzzer to support kfuncs and other helper functions: Alanis Negroni
added support for BTF, so we can now have access to more eBPF features

● Better coverage guided fuzzing
● Fuzzing eBPF on Windows? (once support for it lands)

Future research

