
BPF: Indirect Jumps

Anton Propototov

Contents

● BPF Static Keys (in a Nutshell)
● Instruction Set Maps
● Indirect Branches in BPF

BPF Static Keys

BPF Static Keys: branch is unlikely, key is off

BPF Static Keys: branch is unlikely, key is off

Static Keys vs. Relocations

call 0x76

goto +0
r0 = 0
exit

r1 = map

…

call 0x6
goto pc-42

r2 = 42

…

…
call 0x76

goto +38
r0 = 0
exit

r1 = map

…

call 0x6
goto pc-42

r2 = 42

…

…

Key off Key on

Static Keys vs. Relocations

call 0x76

goto +0
r0 = 0
exit

r1 = map

…

call 0x6
goto pc-42

r2 = 42

…

…
call 0x76

goto +38
r0 = 0
exit

r1 = map

…

call 0x6
goto pc-42

r2 = 42

…

…

Key off Key on

Static Keys vs. Relocations

call 0x76
…

… 18000000beef1011
00000000ffffffff
r0 = *(u64 *)r0

bpf_patch_insn_data()

call 0x76

goto +0
r0 = 0
exit

r1 = map

…

call 0x6
goto pc-42

r2 = 42

…

…
call 0x76

goto +38
r0 = 0
exit

r1 = map

…

call 0x6
goto pc-42

r2 = 42

…

…

Key off Key on

ldimm64

goto +0
r0 = 0
exit

r1 = map

…

call 0x6
goto pc-44

r2 = 42

…

…

goto +38
r0 = 0
exit

…

…

Key off Key on

Imm >> 32
r0 = *r0

ldimm64

r1 = map

call 0x6
goto pc-42

r2 = 42

…

Imm >> 32
r0 = *r0Load, verify, relocate

This jump becomes
invalid, we need to
relocate it the same way
the normal jumps are
relocated

A new BPF map: Instruction Set

r0 = 17

goto +0
r0 = 0
exit

r1 = map

…

call 0x6
goto pc-42

r2 = 42

…

…

BPF Program
1
42

INSN_SET map

33

INSN_SET map

Load, verify, relocate
r0 = 17

goto +0
r0 = 0
exit

r1 = map

…

call 0x6
goto pc-42

r2 = 42

…

…

BPF Program

3
47

INSN_SET map

35

INSN_SET map

…
…

…
…

…
…

Instruction Set Map Properties

Before program load
● A map is populated with instructions offsets

On program load:
● The map becomes read-only to userspace

(it’s always read-only on the BPF side)
● Every instruction in this map is properly relocated

BPF Static Keys API

With such a map configuring a static key is easy:

 bpf(STATIC_KEY_UPDATE,
 attrs={.key = map_fd, .on = <bool>})

* See more details on BPF Static Keys in [1] and [2]

https://lpc.events/event/17/contributions/1608/
http://oldvger.kernel.org/bpfconf2024.html

Why new map: Instruction Set

● Jump offsets can be stored in 16-byte jumps (we’re adding new
instructions in any case)

● However, this is more useful to have an object which groups to
simplify static keys API

● What is even more important is that instruction sets can also be
used for other purposes, e.g., to implement Indirect Branches

Indirect Jumps

● The goal is to add a new instruction (or multiple)

goto Rx
goto *Rx
(or so, see later)

Indirect Jumps: possible with Instruction Set Maps

…
goto Rx
…
insn j
…

j

i
j

Program P Map M

…
…insn i

…
i

k …

…
insn k
…

k

A `goto rx` instruction must point to an instruction set map. Then
during verification we can check that 1) Every jump from `goto rX`
is valid 2) Rx is actually loaded from M

Indirect Jumps: new instructions

This looks reasonable to add the following instructions:
● BPF_JMP|BPF_JA|BPF_X, src=index, dst=0, imm=map

○ Translated by the verifier to the second form

● BPF_JMP|BPF_JA|BPF_X, src=map_value, dst=1, imm=map
○ Jitted to, e.g., `jmpq *(%rsi)`

● BPF_JMP|BPF_JA|BPF_X, src=ip, dst=2, imm=map
○ Jitted to, e.g., `jmpq *%rsi`

○ (This one looks like an optional + requires more verification)

Orthodox Jumps: check_cfg & visit_insn

F

F

F

B

Vertex state (from here):
1

2

3

4

https://github.com/torvalds/linux/blob/v6.11/kernel/bpf/verifier.c#L15761

Indirect Jumps: check_cfg & visit_insn

F

Vertex state:
● Old orthodox state
● + A new Counter inside insn_state

1

2

3

…
…

…

i
j

Map M

…
…

k …

Entering goto rx instruction:

Pushing the next insns to stack:

Indirect Jumps: Verification (do_check)

* Only DST=0 version of instruction is supported ATM. For DST=1 it must be checked
that src_reg was loaded from the map

Indirect Jumps: prepare to JIT: DST=0 -> DST=1

Indirect Jumps: prepare to JIT: DST=0 -> DST=1

Indirect Jumps: JIT

● The only change to [x86] Jit is to add the following case

Code example 1

Code example 1
0: r1 = 0
1: goto r1
2: r0 = 2
3: exit

Create an instruction set map
of size 1 with one value: M={2}

Put the map file descriptor
inside the instruction. Now
program is ready to load.

Code example 1

Code example 2

C jump tables

C jump tables

C jump tables

C jump tables

JMP|JA|X, .src=r1, .imm=map(x)

libbpf

llvm optimizer

C Switches

● All the switches are now replaced with if-else-...
● Larger switches can benefit from using an indirect jump
● Yonghong said:

○ First support for jump tables

○ Then support for switches

Next Steps

● Start pushing the patch set: insn set map, then static keys

● Indirect branches:
1. LLVM code generation + libbpf support (jump_tables)
2. Refactor the kernel side accordingly
3. may_goto 1

● C Switches => indirect jumps

Questions?

