kfuncs for BPF LSM use cases

Vienna, Austria

Who are we?

My name is Matt Bobrowski
| live in Zurich, Switzerland

| work at Google on Security Endpoint Agents | work at Meta

| have been dabbling in and around the Linux | am a maintainer/reviewer for various things in
kernel for 5 or so years now the kernel

e | was recently appointed as the BPF LSM

co-maintainer

)

My name is Song Liu
| live in Bay Area, California

LINUX PLUMBERS CONFERENCE | st 1202024

What's new in the BPF LSM space?

CIRNIT IV, DLILIAMDIEDRC AARNMTFEFDEA AT Vienna, Austria

Sept. 18-20, 2024

We have some new sleepable BPF LSM hooks

e Added selected path-based (CONFIG SECURITY PATH) LSM security hooks to the pre-existing
sleepable Ism_hooks set, including:
o security path unlink()
security path mkdir ()
security path _rmdir ()
security path truncate()
security path symlink()
security path _link()
security path _rename()
security path chmod()
o security path chown()
® Also added the new security file post open() LSM security hook to the pre-existing
sleepable_Ism_hooks set

)

O O O O O O O

| || ‘ ’ | DITIMREDRC N] ‘ CCDENICLE Vienna, Austria
L1IN U /\ ' | Sept. 18-20, 2024

And a bunch of other notable improvements here and there...

® \We now have the BPF verifier performing improved return value range (@, {1, -MAX ERRNO})
checking for BPF LSM programs
o The BPF verifier now ensures that BPF LSM programs attached to a LSM hook returning:
m vo1ld can return any value
m Abool-1like valuecanonlyreturn, 1
m A possible error code value can only return @, -MAX ERRNO
o This improves overall system stability as we no longer need to concern ourselves with return
values being misinterpreted from post LSM hook invocation
e Disallowed BPF LSM programs to attach to specific LSM hooks
o Specifically, those which take output-like arguments as we can't exactly handle writes performed

)

to those output arguments from the context of BPF LSM programs

| [‘ ’ | DITIMREDRC N] ‘ CCDENICLE Vienna, Austria
| ' | Sept. 18-20, 2024

New BPF kfuncs (currently) restricted to BPF LSM programs

o bpf get file xattr(struct file *file, const char *name__str,
struct bpf _dynptr *value p)

o KF_TRUSTED ARGS, KF SLEEPABLE
o bpf _get _dentry_xattr(struct dentry *dentry, const char *name__str,
struct bpf _dynptr *value p)
o KF_TRUSTED ARGS, KF SLEEPABLE
o bpf _get _task _exe file(struct task_struct *task)
o KF ACQUIRE, KF TRUSTED ARGS, KF SLEEPABLE
o bpf put file(struct file *file)
o KF RELEASE
o bpf path d path(struct path *path, char *buf, size t buf sz)
o KF_TRUSTED ARGS

)

‘ H IN7 VYL L IDCDC 7\ N if DENICLE Vienna, Austria
LIINUA ‘ I\ | Sept. 18-20, 2024

Why the need for the new bpf path d path() BPF kfunc?

e We're done wit the legacy bpf _d_path () BPF helper
o It's inherently unsafe to use from a wide range of contexts

m Naive usages of bpf d path() canlead to BPF programs being susceptible to memory
corruption bugs
e We've seen this issue with bpf d path() come up time and time again 1, 2, 3
o Supplying an arbitrary pointertoa struct path buried away in some arbitrary in-kernel
struct should simply not be permitted
o We can now do better by enforcing more safety via KF TRUSTED ARGS semantics
o Limited to sleepable BPF LSM(+) programs only, when technically, it can be called from
non-sleepable contexts too

e Moving forward BPF LSM programs should use the bpf path d path() instead, because it:
o Enforces KF TRUSTED ARGS upon the struct path pointer supplied to it
o Enforces that the supplied output buffer is sized correctly through the = sz argument
annotations/constraints

ﬁo No longer needs to be just used from sleepable BPF LSM programs

| || ‘ ’ | DITIMREDRC N] ‘ CCDENICLE Vienna, Austria
LIINU /N T LU ' \ « | 71\ | | Sept. 18-20, 2024

https://lore.kernel.org/bpf/CAG48ez0ppjcT=QxU-jtCUfb5xQb3mLr=5FcwddF_VKfEBPs_Dg@mail.gmail.com/
https://lore.kernel.org/bpf/20230606181714.532998-1-jolsa@kernel.org/
https://lore.kernel.org/bpf/20220219113744.1852259-1-memxor@gmail.com/

bpf d path()

SEC("1lsm.s/file open")
int BPF _PROG(file open, struct file *file)
{

int ret;

char bufl[64] = {};

struct task struct *current;

current = bpf_get_current_task_btf();
bpf_rcu_read_lock();

ret =
bpf d path(¤t->mm->exe file->f path,
buf, sizeof(buf));

/* Do something with buf */
bpf _rcu_read_unlock();
return Q;

bpf path_d_path() (Preferred, use this!)

SEC("1sm/file open")
int BPF _PROG(file open, struct file *file)
{

int ret;

char bufl[64] = {};

struct file *exe file;

struct task struct *current;

current = bpf_get_current_task_btf();
exe_file = bpf_get_task_exe_file(current);
if (!exe_file)

return 0;

ret = bpf _path d path(&exe file->f path,
buf, sizeof(buf));

bpf put_file(exe file);
/* Do something with buf */
return Q;

ITEDENICD Vienna, Austria

Sept. 18-20, 2024

More on KF TRUSTED ARGS semantics

e kfuncs with with KF TRUSTED ARGS flag requires that all input pointers to BTF objects have been
nassed in their unmodified form

e Pointers passed directly to the BPF program as arguments are trusted (with some exceptions, check

cernel/bpf/bpf Ism.c:untrusted Ism _hooks)
e A pointer returned by a KF ACQUIRE BPF kfunc is considered as trusted by the BPF verifier
o The verifier ensures that these pointers are released by a KF RELEASE kfunc

e Pointer derived with pointer walking is not trusted (modulo some exceptions, check
cernel/bpf/verifier.c:BTF_TYPE_SAFE_TRUSTED)
e Minimize the use of non-KF TRUSTED ARGS helpers/kfuncs

)

| [‘ ’ | DITIMREDRC N] ‘ CCDENICLE Vienna, Austria
| ' | Sept. 18-20, 2024

More on KF TRUSTED ARGS (cont’d)

SEC("1lsm.s/file open'")
int BPF PROG(hook file open, struct file *file) /* file is trusted */

{

struct task struct *task = bpf get current task btf(); /* trusted */
struct file *acquired;

struct file *not trusted;

not trusted = task->mm->exe file; /* pointer walking, not trusted */
acquired = bpf get task exe file(task); /* trusted */
if (lacquired)

return Q;

bpf put file(acquired); /* acquired pointer must be released */
return Q;

[| ‘ ’ | " DITINDEDC N] ‘ FCDENICLC Vienna, Austria
8 ' ' | Sept. 18-20, 2024

What's possibly coming up next for the BPF LSM?

Tl H | " " DITINADEDC MmN] ‘ CEDRDENICE Vienna, Austria

We need more VFS-centric BPF kfuncs made available to the
BPF LSM

e Some other things that we'd like to do from the BPF LSM are:
o Get stable references to other nested struct path objects which buried away within some core

in-kernel data structures, including:
m current->fs->root
® Proposal is to add something like bpf _get task fs root(struct task struct
*)
m current->fs->pwd
® Proposal is to add something like bpf get task fs pwd(struct task struct
(%)
m Returned struct path pointers can in turn be passed to things like bpf path d path()
such that reconstructed paths can be included within generated security events

)

| [‘ ’ | DITIMREDRC N] ‘ CCDENICLE Vienna, Austria
| ' | Sept. 18-20, 2024

We have some more specific use cases to discuss

1t | ’ l " DITINMDEDC N] ‘ rcpe ’ Tal= Vienna, Austria
L 1IN U /\ LL\UIVID] \ « L \JIN I\ Sept. 18-20, 2024

Use case: Marking a set of files

® |tis common for LSMs to specify a policy onto multiple files

® Requirement: handle large number of files

o Files/subdirectory inherit property from parent directory
o Some pattern/wildcard/regex can be really helpful

e Non-requirement: byte-to-byte verification
o Checksum verifications

o Signature checks
e /usr/bin/*, /usr/bin/*/*, /dev/nvmel[0-9]+n[0-9]+.%*

| [‘ ’ | DITIMREDRC N] ‘ CCDENICLE Vienna, Austria
| ' | Sept. 18-20, 2024

Solution 1: Label every file that matches the pattern with an
Xattr

® Pros
o 0O(1) time overhead when checking the rules

® Cons
o O(N) memory overhead, N=# of active inodes
® SELinux and Smack use this method
o Set xattr in hook inode init security()
o User space tools can also update xattrs
e Can we do this in BPF LSM? Not yet.
o Hook inode init security() does not work for BPF LSM (more on this later)
o setxattr is not allowed from BPF programs
o xattr name prefix security.bpf.*isneeded

)

| [‘ ’ | DITIMREDRC N] ‘ CCDENICLE Vienna, Austria
| ' | Sept. 18-20, 2024

Solution 2: Match full path to patterns

® Pros
© Low memory overhead
® Cons

o Expensive string operations needed to check path against rules
Apparmor and Tomoyo use this method

Can we do this in BPF LSM? Yes.

Reconstruct path with bpf path d path()

No good pattern matching library in BPF (yet)

)

| [‘ ’ | DITIMREDRC N] ‘ CCDENICLE Vienna, Austria
A AL | - ' | | 458 | Sept. 18-20, 2024

Solution 2: Match full path to patterns

® Pros
© Low memory overhead
® Cons

o Expensive string operations needed to check path against rules
Apparmor and Tomoyo use this method

Can we do this in BPF LSM? Yes.

Reconstruct path with bpf path d path()

No good pattern matching library in BPF (yet)

)

| [‘ ’ | DITIMREDRC N] ‘ CCDENICLE Vienna, Austria
A AL | - ' | | 458 | Sept. 18-20, 2024

Solution 3: Walk the VFS tree

® Pros
© Low memory overhead
® Cons

o No protection against race conditions (with rename, etc.)
e Landlock uses this approach

e Can we do this in BPF LSM? Yes, but we cannot (yet) use KF TRUSTED ARGS.

1t | ’ l V DITIMREDRSC N] ‘ rcpe ’ Tal= Vienna, Austria
L 1IN U /\ 8 L ' : 45 AN ’) \v L Sept. 18-20, 2024

Solution 3: Walk the VFS tree (cont’d)

SEC("1sm/file open")
int BPF_PROG(hook file open, struct file* file) {
struct mount* mnt = container of(file->f path.mnt, struct mount, mnt);
struct dentry* dentry = file->f path.dentry;
for (i = @; i < MAX WALK DEPTH; i++) {
struct dentry* root dentry = BPF _CORE READ(mnt, mnt.mnt root);
struct dentry* parent;
if (ctx->dentry == root dentry) {
/* mount handling omitted for simplicity, something like follow up() */
}
bpf strncmp(rule str[i], dentry->d name, ...);
parent = BPF_CORE READ(dentry, d _parent);
if (parent == dentry)
break;
dentry = parent;

}

} /* Note: mnt, dentry, parent are not trusted. */

1t | ’ l V DITIMREDRSC N] ‘ rcpe ’ Tal= Vienna, Austria
L 1IN U /\ ' ' | 4% AN ’) \v L Sept. 18-20, 2024

Solution 4: Mark inode as we walk down VFS tree [1]

e How to do this in BPF LSM?
o Load inode flags from xattr to BPF map on security d instantiate()
m This is because we need dentry to read xattr (in fact, only special fs like 9p uses dentry for xattr)
o Propagate inode flags to children on security inode init security()
o Check inode flags on security file open()
® Pros:

o 0O(1) time overhead when checking the rules
e (Cons:
o O(N) memory overhead
® \What is missing?
o d_walk() like kfunc to update BPF map when xattr changes

[1] Based on https://lore.kernel.org/bpf/20240729-zollfrei-verteidigen-cf359eb36601@brauner/

| || ‘ ’ | DITIMREDRC N] ‘ CCDENICLE Vienna, Austria
L1IN U /\ ' | Sept. 18-20, 2024

Walk the VFS tree with trusted pointers

e Add more KF ACQUIRE/KF RELEASE based BPF kfuncs
e We need BPF kfuncs that operate on struct dentryi.e.
o bpf _dget(),bpf dput(),bpf dget parent(),bpf d find alias()
e We need BPF kfuncs that operate on struct mountand struct vfsmount, i.e.
o bpf _mntget(),bpf mntput(),bpf real mount()
e Perhaps also RCU flavor kfuncs (KF RCU PROTECTED)
e And perhaps more...

e These new BPF kfuncs will be used to enforce trusted pointer semantics

e The BPF verifier will ensure that reference acquired by these kfuncs will be released

| [‘ ’ | DITIMREDRC N] ‘ CCDENICLE Vienna, Austria
| ' | Sept. 18-20, 2024

Walk the VFS tree with trusted pointers (cont’d)

SEC("1sm/file open")
int BPF _PROG(hook file open, struct file* file) {
struct mount* mnt = bpf_real mount(file->f path.mnt);
struct dentry* dentry = bpf_file dentry(file->f path.dentry);
for (i = @; i < MAX WALK DEPTH; i++) {
struct dentry* root dentry = BPF _CORE READ(mnt, mnt.mnt root);
struct dentry* parent;
if (ctx->dentry == root _dentry) {
/* mount handling omitted for simplicity */
}

bpf_get_dentry_xattr(dentry, “security.bpf.xxx”, ...);
parent = bpf_dget _parent(dentry);
if (parent == dentry)
break;

bpf _dput(dentry);
dentry = parent;

}

bpf_dput(dentry);

bpf _mntput(mnt);

6 /* Note: mnt, dentry, parent are trusted. */

| 11 ‘ ’ | " DITINDEDC N] ‘ FCDENICLC Vienna, Austria
L1IN U /\ ‘ ' | Sept. 18-20, 2024

Walk the VFS tree with trusted pointers and BPF iterator

e BPF iterators enable safe traversal of kernel objects
e \We have some pre-existing BPF iterators already:
o task, task file, task vma
o socket
o map, map element
o ksym
e BPF iterator to walk dentry toward root
® BPF iterator similartod walk ()

1 1 IN YL L DIEEDC I"NAANITFIEDIEANICT Vienna, Austria

- i ‘ ’ |) ,~ tt LU IV | DEINNY WA] | ‘ TCN\LCINUL Sept. 18-20, 2024

Walk dentry tree with trusted pointers and BPF iterator
(cont’d)

SEC("1lsm/file open")
int BPF PROG(hook file open, struct file* file) {
bpf for _each(dentry, dentry, &file->f path, BPF _DENTRY _ITER _TO ROOT) {
bpf get dentry xattr(dentry, "security.bpf.xxx", &value ptr);
/* check xattr in value ptr */

| [‘ ’ | DITIMREDRC N] ‘ CCDENICLE Vienna, Austria
8 ' | Sept. 18-20, 2024

Align the BPF LSM more closely with other in-kernel LSMs

e BPF LSM is not yet as capable as in-kernel LSMs

e Missing per object data for some data types
e Not able to write to output arguments of LSM hooks

1t | ’ l V DITIMREDRSC N] ‘ rcpe ’ Tal= Vienna, Austria
LLIINU/\ | ' | 4% |\ Sept. 18-20, 2024

BPF local storage for per object data

e Most LSMs use a blob allocated for per object data
® BPF uses local storage, task local storage, inode local storage, etc.
e Still missing local storage for the following types
o struct file
struct cred
struct 1ipc
struct msg _msg
struct superblock

O O O O

| [‘ ’ | DITIMREDRC N] ‘ CCDENICLE Vienna, Austria
| ' | Sept. 18-20, 2024

LSM hooks with output arguments

® Some security hooks use pointer arguments for output
o security inode init security()
security sb _set mnt opts()
security cred getsecid()
security current getsecid subj()
security task getsecid obj()
security ipc getsecid()
security getselfattr()
security getprocattr()
o security secctx to secid()
e Unlike in-kernel LSMs, the BPF LSM currently cannot write to these output pointer arguments

O O O O O O O

e Potential solutions
o Add kfuncs for specific use cases
o Create writable contexts for these output pointers

)

| 11 ‘ ’ | " DITINDEDC N] ‘ FCDENICLC Vienna, Austria
L1IN U /\ ‘ ' | Sept. 18-20, 2024

Thanks for your attention!
Questions?

1t | ’ l " DITINMDEDC N] ‘ rcpe ’ Tal= Vienna, Austria
L 1IN U /\ LL\UIVID] \ « L \JIN I\ Sept. 18-20, 2024

