
kfuncs for BPF LSM use cases

Who are we?

● My name is Matt Bobrowski
● I live in Zurich, Switzerland
● I work at Google on Security Endpoint Agents
● I have been dabbling in and around the Linux

kernel for 5 or so years now
● I was recently appointed as the BPF LSM

co-maintainer

● My name is Song Liu
● I live in Bay Area, California
● I work at Meta
● I am a maintainer/reviewer for various things in

the kernel

What's new in the BPF LSM space?

We have some new sleepable BPF LSM hooks

● Added selected path-based (CONFIG_SECURITY_PATH) LSM security hooks to the pre-existing

sleepable_lsm_hooks set, including:

○ security_path_unlink()
○ security_path_mkdir()
○ security_path_rmdir()
○ security_path_truncate()
○ security_path_symlink()
○ security_path_link()
○ security_path_rename()
○ security_path_chmod()
○ security_path_chown()

● Also added the new security_file_post_open() LSM security hook to the pre-existing

sleepable_lsm_hooks set

● We now have the BPF verifier performing improved return value range (0, {1, -MAX_ERRNO})

checking for BPF LSM programs

○ The BPF verifier now ensures that BPF LSM programs attached to a LSM hook returning:

■ void can return any value

■ A bool-like value can only return 0, 1
■ A possible error code value can only return 0, -MAX_ERRNO

○ This improves overall system stability as we no longer need to concern ourselves with return

values being misinterpreted from post LSM hook invocation

● Disallowed BPF LSM programs to attach to specific LSM hooks

○ Specifically, those which take output-like arguments as we can't exactly handle writes performed

to those output arguments from the context of BPF LSM programs

And a bunch of other notable improvements here and there...

New BPF kfuncs (currently) restricted to BPF LSM programs

● bpf_get_file_xattr(struct file *file, const char *name__str,
 struct bpf_dynptr *value_p)
○ KF_TRUSTED_ARGS, KF_SLEEPABLE

● bpf_get_dentry_xattr(struct dentry *dentry, const char *name__str,
 struct bpf_dynptr *value_p)
○ KF_TRUSTED_ARGS, KF_SLEEPABLE

● bpf_get_task_exe_file(struct task_struct *task)
○ KF_ACQUIRE, KF_TRUSTED_ARGS, KF_SLEEPABLE

● bpf_put_file(struct file *file)
○ KF_RELEASE

● bpf_path_d_path(struct path *path, char *buf, size_t buf__sz)
○ KF_TRUSTED_ARGS

● We're done wit the legacy bpf_d_path() BPF helper
○ It's inherently unsafe to use from a wide range of contexts
■ Naive usages of bpf_d_path() can lead to BPF programs being susceptible to memory

corruption bugs
● We've seen this issue with bpf_d_path() come up time and time again 1, 2, 3

○ Supplying an arbitrary pointer to a struct path buried away in some arbitrary in-kernel
struct should simply not be permitted

○ We can now do better by enforcing more safety via KF_TRUSTED_ARGS semantics
○ Limited to sleepable BPF LSM(+) programs only, when technically, it can be called from

non-sleepable contexts too
● Moving forward BPF LSM programs should use the bpf_path_d_path() instead, because it:
○ Enforces KF_TRUSTED_ARGS upon the struct path pointer supplied to it
○ Enforces that the supplied output buffer is sized correctly through the __sz argument

annotations/constraints
○ No longer needs to be just used from sleepable BPF LSM programs

Why the need for the new bpf_path_d_path() BPF kfunc?

https://lore.kernel.org/bpf/CAG48ez0ppjcT=QxU-jtCUfb5xQb3mLr=5FcwddF_VKfEBPs_Dg@mail.gmail.com/
https://lore.kernel.org/bpf/20230606181714.532998-1-jolsa@kernel.org/
https://lore.kernel.org/bpf/20220219113744.1852259-1-memxor@gmail.com/

bpf_d_path()

SEC("lsm.s/file_open")
int BPF_PROG(file_open, struct file *file)
{
 int ret;
 char buf[64] = {};
 struct task_struct *current;

 current = bpf_get_current_task_btf();
 bpf_rcu_read_lock();
 ret =
bpf_d_path(¤t->mm->exe_file->f_path,
 buf, sizeof(buf));
 /* Do something with buf */
 bpf_rcu_read_unlock();
 return 0;
}

bpf_path_d_path() (Preferred, use this!)

SEC("lsm/file_open")
int BPF_PROG(file_open, struct file *file)
{
 int ret;
 char buf[64] = {};
 struct file *exe_file;
 struct task_struct *current;

 current = bpf_get_current_task_btf();
 exe_file = bpf_get_task_exe_file(current);
 if (!exe_file)
 return 0;

 ret = bpf_path_d_path(&exe_file->f_path,
 buf, sizeof(buf));
 bpf_put_file(exe_file);
 /* Do something with buf */
 return 0;
}

More on KF_TRUSTED_ARGS semantics

● kfuncs with with KF_TRUSTED_ARGS flag requires that all input pointers to BTF objects have been

passed in their unmodified form

● Pointers passed directly to the BPF program as arguments are trusted (with some exceptions, check

kernel/bpf/bpf_lsm.c:untrusted_lsm_hooks)

● A pointer returned by a KF_ACQUIRE BPF kfunc is considered as trusted by the BPF verifier

○ The verifier ensures that these pointers are released by a KF_RELEASE kfunc

● Pointer derived with pointer walking is not trusted (modulo some exceptions, check

kernel/bpf/verifier.c:BTF_TYPE_SAFE_TRUSTED)

● Minimize the use of non-KF_TRUSTED_ARGS helpers/kfuncs

More on KF_TRUSTED_ARGS (cont’d)

SEC("lsm.s/file_open")
int BPF_PROG(hook_file_open, struct file *file) /* file is trusted */
{
 struct task_struct *task = bpf_get_current_task_btf(); /* trusted */
 struct file *acquired;
 struct file *not_trusted;

 not_trusted = task->mm->exe_file; /* pointer walking, not trusted */
 acquired = bpf_get_task_exe_file(task); /* trusted */
 if (!acquired)
 return 0;

 bpf_put_file(acquired); /* acquired pointer must be released */
 return 0;
}

What's possibly coming up next for the BPF LSM?

We need more VFS-centric BPF kfuncs made available to the
BPF LSM

● Some other things that we'd like to do from the BPF LSM are:

○ Get stable references to other nested struct path objects which buried away within some core

in-kernel data structures, including:

■ current->fs->root
● Proposal is to add something like bpf_get_task_fs_root(struct task_struct
*)

■ current->fs->pwd
● Proposal is to add something like bpf_get_task_fs_pwd(struct task_struct
(*)

■ Returned struct path pointers can in turn be passed to things like bpf_path_d_path()

such that reconstructed paths can be included within generated security events

We have some more specific use cases to discuss

● It is common for LSMs to specify a policy onto multiple files

● Requirement: handle large number of files

○ Files/subdirectory inherit property from parent directory

○ Some pattern/wildcard/regex can be really helpful

● Non-requirement: byte-to-byte verification

○ Checksum verifications

○ Signature checks

● /usr/bin/*, /usr/bin/*/*, /dev/nvme[0-9]+n[0-9]+.*

Use case: Marking a set of files

Solution 1: Label every file that matches the pattern with an
xattr

● Pros

○ O(1) time overhead when checking the rules

● Cons

○ O(N) memory overhead, N=# of active inodes

● SELinux and Smack use this method

○ Set xattr in hook inode_init_security()

○ User space tools can also update xattrs

● Can we do this in BPF LSM? Not yet.

○ Hook inode_init_security() does not work for BPF LSM (more on this later)

○ setxattr is not allowed from BPF programs

○ xattr name prefix security.bpf.* is needed

● Pros

○ Low memory overhead

● Cons

○ Expensive string operations needed to check path against rules

● Apparmor and Tomoyo use this method

● Can we do this in BPF LSM? Yes.

● Reconstruct path with bpf_path_d_path()

● No good pattern matching library in BPF (yet)

Solution 2: Match full path to patterns

● Pros

○ Low memory overhead

● Cons

○ Expensive string operations needed to check path against rules

● Apparmor and Tomoyo use this method

● Can we do this in BPF LSM? Yes.

● Reconstruct path with bpf_path_d_path()

● No good pattern matching library in BPF (yet)

Solution 2: Match full path to patterns

Solution 3: Walk the VFS tree

● Pros

○ Low memory overhead

● Cons

○ No protection against race conditions (with rename, etc.)

● Landlock uses this approach

● Can we do this in BPF LSM? Yes, but we cannot (yet) use KF_TRUSTED_ARGS.

SEC("lsm/file_open")
int BPF_PROG(hook_file_open, struct file* file) {
 struct mount* mnt = container_of(file->f_path.mnt, struct mount, mnt);
 struct dentry* dentry = file->f_path.dentry;
 for (i = 0; i < MAX_WALK_DEPTH; i++) {
 struct dentry* root_dentry = BPF_CORE_READ(mnt, mnt.mnt_root);
 struct dentry* parent;
 if (ctx->dentry == root_dentry) {
 /* mount handling omitted for simplicity, something like follow_up() */
 }
 bpf_strncmp(rule_str[i], dentry->d_name, ...);
 parent = BPF_CORE_READ(dentry, d_parent);
 if (parent == dentry)
 break;
 dentry = parent;
 }
} /* Note: mnt, dentry, parent are not trusted. */

Solution 3: Walk the VFS tree (cont’d)

● How to do this in BPF LSM?

○ Load inode flags from xattr to BPF map on security_d_instantiate()
■ This is because we need dentry to read xattr (in fact, only special fs like 9p uses dentry for xattr)

○ Propagate inode flags to children on security_inode_init_security()

○ Check inode flags on security_file_open()
● Pros:

○ O(1) time overhead when checking the rules

● Cons:

○ O(N) memory overhead

● What is missing?

○ d_walk() like kfunc to update BPF map when xattr changes

[1] Based on https://lore.kernel.org/bpf/20240729-zollfrei-verteidigen-cf359eb36601@brauner/

Solution 4: Mark inode as we walk down VFS tree [1]

Walk the VFS tree with trusted pointers

● Add more KF_ACQUIRE/KF_RELEASE based BPF kfuncs

● We need BPF kfuncs that operate on struct dentry i.e.

○ bpf_dget(), bpf_dput(), bpf_dget_parent(), bpf_d_find_alias()
● We need BPF kfuncs that operate on struct mount and struct vfsmount, i.e.

○ bpf_mntget(), bpf_mntput(), bpf_real_mount()
● Perhaps also RCU flavor kfuncs (KF_RCU_PROTECTED)

● And perhaps more...

● These new BPF kfuncs will be used to enforce trusted pointer semantics

● The BPF verifier will ensure that reference acquired by these kfuncs will be released

Walk the VFS tree with trusted pointers (cont’d)

SEC("lsm/file_open")
int BPF_PROG(hook_file_open, struct file* file) {
 struct mount* mnt = bpf_real_mount(file->f_path.mnt);
 struct dentry* dentry = bpf_file_dentry(file->f_path.dentry);
 for (i = 0; i < MAX_WALK_DEPTH; i++) {
 struct dentry* root_dentry = BPF_CORE_READ(mnt, mnt.mnt_root);
 struct dentry* parent;
 if (ctx->dentry == root_dentry) {
 /* mount handling omitted for simplicity */
 }
 bpf_get_dentry_xattr(dentry, “security.bpf.xxx”, ...);
 parent = bpf_dget_parent(dentry);
 if (parent == dentry)
 break;
 bpf_dput(dentry);
 dentry = parent;
 }
 bpf_dput(dentry);
 bpf_mntput(mnt);

/* Note: mnt, dentry, parent are trusted. */

Walk the VFS tree with trusted pointers and BPF iterator

● BPF iterators enable safe traversal of kernel objects

● We have some pre-existing BPF iterators already:

○ task, task_file, task_vma

○ socket
○ map, map element
○ ksym

● BPF iterator to walk dentry toward root

● BPF iterator similar to d_walk()

Walk dentry tree with trusted pointers and BPF iterator
(cont’d)

SEC("lsm/file_open")
int BPF_PROG(hook_file_open, struct file* file) {
 bpf_for_each(dentry, dentry, &file->f_path, BPF_DENTRY_ITER_TO_ROOT) {
 bpf_get_dentry_xattr(dentry, "security.bpf.xxx", &value_ptr);
 /* check xattr in value_ptr */
 }
 ...
}

● BPF LSM is not yet as capable as in-kernel LSMs

● Missing per object data for some data types

● Not able to write to output arguments of LSM hooks

Align the BPF LSM more closely with other in-kernel LSMs

● Most LSMs use a blob allocated for per object data

● BPF uses local storage, task local storage, inode local storage, etc.

● Still missing local storage for the following types

○ struct file
○ struct cred
○ struct ipc
○ struct msg_msg
○ struct superblock

BPF local storage for per object data

LSM hooks with output arguments

● Some security hooks use pointer arguments for output

○ security_inode_init_security()
○ security_sb_set_mnt_opts()
○ security_cred_getsecid()
○ security_current_getsecid_subj()
○ security_task_getsecid_obj()
○ security_ipc_getsecid()
○ security_getselfattr()
○ security_getprocattr()
○ security_secctx_to_secid()

● Unlike in-kernel LSMs, the BPF LSM currently cannot write to these output pointer arguments

● Potential solutions

○ Add kfuncs for specific use cases

○ Create writable contexts for these output pointers

Thanks for your attention!
Questions?

