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In-Kernel Verification
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Program Verification KernelSafe P

   Goal-1: always proves the property if it holds (completeness)

   Goal-2: never proves the property if it does not hold (soundness)
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PA sound and complete verifier

   Goal-1: always proves the property if it holds (completeness)

   Goal-2: never proves the property if it does not hold (soundness)

Decidability
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P

A sound and complete verifier

Always proves the property if it holds



The Verifier
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• Verify programs with abstract interpretation-based techniques 
• Tracks the program state, e.g., range, in interval and tnum 
• Equivalence classes of values detection using identity tracking 
• Tacking the stack states for register/value spilling and filling 
• Heuristically pruning via comparing with known safe states 
• Fix point computation with loop contract
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Imprecisions



The Interval Domain
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Operation:

Addition: If x ∈ [a1, b1] and y ∈ [a2, b2],  then x + y ∈ [a1 + a2, b1 + b2]
Subtraction: x − y ∈ [a1 − b2, b1 − a2]

Information Loss:

- Minimal Loss: For addition and subtraction, the interval domain provides a tight 
approximation.

Significant Loss: under/overflow leads to unbound ranges

Example:

- If  and , then , precisely covering all possible sums of  and x ∈ [0,1] y ∈ [0,1] x + y ∈ [0,2] x y
- However,  is unbounded in the unsigned domainx − y



The Interval Domain
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Operation:
Multiplication: For  and , compute all products of interval endpoints: 

  
 Then 

x ∈ [a1, b1] y ∈ [a2, b2]
P = {a1a2, a1b2, b1a2, b1b2}

x × y ∈ [min(P), max(P)]
Information Loss:

- Significant Loss:  cross positive and negative values.

- Significant Loss: potential overflow, e.g., greater than U16/U32_MAX



The Interval Domain
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AND: over-approximate the higher bound, obtain the lower bound from tnum 

OR: over-approximate the lower bound, obtain the higher bound from tnum 

XOR: obtain the bounds from tnum 

LSH: shift bound if top bit not shifted out, otherwise unbound/tnum 

RSH: lose all sign information

ARSH: lose all unsigned information, obtain from tnum

For all shift operations, losing everything with variable operand



The Tnum Domain
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 Bitwise Operations:

- performed per bit using extended truth tables that handle the unknown state (⊤).

Information Loss:

- Minimal Loss: highly precise for bitwise operations, as it tracks each bit individually

Example:

- Let   
- Let   
- Compute  z = x & y 

x = [1,0, ⊤ ,1]
y = [⊤,1,0,1]

Truth table for AND

1   ⊤    ⊤  
0 1 0

 ⊤  0 0
1 1 1



The Tnum Domain
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 Addition:

- bit-level computations with carries. 
- unknown bits and carries propagate uncertainty. 

Information Loss:

- Significant Loss: Even a single unknown bit can cause multiple bits in the result to become 
unknown due to carry propagation.

Example:

- Let   
   

- Compute  z = x + y 

- Result: z = [⊤, ⊤, ⊤, 1] 

x = [1,0,1,1]
y = [0,1, ⊤ ,0]



The Tnum Domain

12

 Subtraction:
- bit-level computations with borrows. 
- unknown bits and borrows propagate uncertainty. 

Information Loss:

- Significant Loss: Similar to addition, uncertainty in bits and borrows leads to multiple 
unknown bits in the result.

Example:

- Let   
    

- Compute  z = x - y 
- Result: z = [⊤, ⊤, 0, 1] 

x = [1, ⊤ ,1,0]
y = [0,1,0,1]



The Tnum Domain
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 Multiplication:

- computed through partial products, shift, and addition. 
- unknown bits in operands lead to many unknown bits in the result. 

Information Loss:

- Significant Loss: unknown bits cause entire rows in the multiplication table to be uncertain.

Example:

- Let   and  
- Compute  z = x * y 

- Partial product 
-  
-

x = [0,⊤] y = [1,1]

x1 × y = 0 × [1,1] = [0,0]
x0 × y = ⊤ × [1,1] = [ ⊤ , ⊤ ]

- Shift and add 
- Shifted  

- Result: 
x1 × y = [0,0]

[ ⊤ , ⊤ ]



Variable Relationship
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Interval and tnum treat variables independently, losing relationship information. 
- r0 and r1 contain the same input source  
-  (r1 >> 1) <= 4 implies r0 <= 9 

1: r0 &= 255
2: r1 = r0
…
6: r1 >>= 1
7: if r1 > 0x4 goto pc+2
8: r2 += r0
9: r3 = *(u8 *)(r2 +0)
invalid variable-offset read from stack R2 var_off=(0x0; 0xff) off=-16 size=1

; R0=scalar(umin=0,umax=255,var_off=(0x0; 0xff))
; R0=scalar(id=1…) R1_w=scalar(id=1…)

; R1=scalar(umin=0,umax=127,var_off=(0x0; 0x7f))
; R1=scalar(umin=0,umax=4,var_off=(0x0; 0x7))



Variable Relationship
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Interval and tnum treat variables independently, losing relationship information. 
- r0 , r4 = 15 - r0 
-  *(u8*) (r1 + r0 + r4) => *(u8*) (r1 + 15) 

∈ [0,15]

; R1 = fp(off=-16)
1: r0 &= 0xf        ; R0_w=scalar(umin=0,umax=15)
2: r1 += r0         ; R1_w=fp(off=-16,umax=15)
3: r4 = 0xf         ; R4_w=15
4: r4 -= r0         ; R4_w=scalar(umin=0,umax=15)
; the offset is r0+(15-r0)
5: r1 += r4         ; R1_w=fp(off=-16,smax=30)
6: r0 = *(u8 *)(r1 +0)
invalid variable-offset read from stack R1
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struct { 
	 __uint(type, BPF_MAP_TYPE_PERCPU_ARRAY); 
	 __uint(max_entries, 1); 
	 __type(key, __u32); 
	 __type(value, __u64[MAX_STACK_RAWTP]); 
	 __type(value, __u64[2* MAX_STACK_RAWTP]); 

} rawdata_map SEC(".maps"); 

SEC("raw_tracepoint/sys_enter") 
int bpf_prog1(void *ctx) 
{ 
… 

	 max_len = MAX_STACK_RAWTP * sizeof(__u64); 
	 /* write both kernel and user stacks to the same buffer */ 
	 raw_data = bpf_map_lookup_elem(&rawdata_map, &key); 
	 if (!raw_data) 
	 	 return 0; 

	 usize = bpf_get_stack(ctx, raw_data, max_len, BPF_F_USER_STACK); 
	 if (usize < 0) 
	 	 return 0; 

	 ksize = bpf_get_stack(ctx, raw_data + usize, max_len - usize, 0); 
	 if (ksize < 0) 
	 	 return 0; 

… 
} 



Existing Efforts
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Sound, Precise, and Fast Abstract Interpretation with Tristate Numbers 
Harishankar Vishwanathan, Matan Shachnai, Srinivas Narayana, Santosh Nagarakatte 
Proceedings of CGO ‘22

Fixing Latent Unsound Abstract Operators in the eBPF Verifier of the Linux Kernel 
Matan Shachnai, Harishankar Vishwanathan, Srinivas Narayana, Santosh Nagarakatte

The Octagon Abstract Domain 
Antoine Miné 
Higher-Order Symb Comput

Automatic Discovery of Linear Constraints among Variables of a Program 
Patrick Cousot and Nicolas Halbwachs. 
POPL ’78

 bpf: Track delta between "linked" registers 
Alexei Starovoitov 

BPF register bounds logic and testing improvements 
Andrii Nakryiko

bpf: Track equal scalars history on per-instruction level 
Eduard Zingerman

Simple and precise static analysis of untrusted Linux kernel extensions 
Gershuni Elazar, et. al. 
PLDI ‘19 

Can we solve the imprecision once for 
all (or most cases)?

https://arxiv.org/search/cs?searchtype=author&query=Vishwanathan,+H
https://arxiv.org/search/cs?searchtype=author&query=Shachnai,+M
https://arxiv.org/search/cs?searchtype=author&query=Narayana,+S
https://arxiv.org/search/cs?searchtype=author&query=Nagarakatte,+S
https://2024.splashcon.org/profile/matanshachnai
https://2024.splashcon.org/profile/harishankarvishwanathan
https://2024.splashcon.org/profile/srinivasnarayana
https://2024.splashcon.org/profile/santoshnagarakatte
https://link.springer.com/article/10.1007/s10990-006-8609-1#auth-Antoine-Min_-Aff1


Lazy Abstraction Refinement with Proof



Verifier

NO, unsafe!

Angry user

YES, safe!!!
Approximation

Program State



Laziness-1: only refine when the verifier cannot continue

Verifier

Time to 
refine!

Happy user

Agree!
Approximation

Refined

Program 
State



Laziness-2: only refine to just enough to continue

Verifier

Time to 
refine!

Happy user

Agree!
Approximation

Refined

Program 
State



Lazy Abstraction Refinement with Proof
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Instruction

Verify

Validator
Refinement

Proof
Solvers

Loader Next
safe

unsafe

Refined Abs

valid

Kernel SpaceUser Space

Condition
Refinement

Proof generated in user space and validated in kernel space ensures minimal 
overhead while achieving a high precision.



Approximation

Refine

Refine

Safe 
States



Approximation

Refine

Refine

Safe 
States

Program 
State

Refinement condition: applicable only if all possible values is within the safe bound



• Using the most precise domain to encode all possible values of a variable 
• Make every input as symbolic value 
• Represent computation as symbolic expressions 
• Record the path condition after each jmp

Symbolic “Domain”
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Example: 
•Let r0 = sym0, r1 = 1 

•For: r2 = 2*r0 + r1 
•Result: r2 = 2*sym0 + 1 

•For: if r2 >  r1 goto +off 
•Remember: 2*sym0 + 1 > 1

Symbolic Interval Tristate   

Precision  Exact Semantics Over-approximation Over-approximation

Arithmetic Exact Low Low

Bitwise Exact Low High

Variable Relation Exact Not Captured Not Captured

Path Condition Exact Over-approximation Over-approximation

Maintaining Cost Low Low Low

Reasoning Cost Complex Low Low



• Represent all possible input sources as symbolic value 
• Represent computation as symbolic expressions 
• Record the path condition after each jmp 
• Essentially, every reg/slot is an identifier binded to some immutable value

Symbolic “Domain”
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; R0 = sym0, R1 = fp(-16)
1: r0 &= 0xf        ; R0 = sym0&0xf
2: r1 += r0         ; R1=fp(-16 + (sym0&0xf))
3: r4 = 0xf         ; R4=15
4: r4 -= r0         ; R4=15 - (sym0&0xf)
5: r1 += r4         ; R1=fp(-16 + (sym0&0xf) + (15-(sym0&0xf)))
6: r0 = *(u8 *)(r1 +0)

; off = -16 + (sym0&0xf) + (15-(sym0&0xf))



Refinement Condition
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• Refine the abstraction to just enough to continue, i.e., safe bound 
• Assert the symbolic state is within this safe bound, i.e., refinement condition 
• The refinement is accepted if the condition holds

; R0 = sym0, R1 = fp(-16)
1: r0 &= 0xf        ; R0 = sym0&0xf
2: r1 += r0         ; R1=fp(-16 + (sym0&0xf))
3: r4 = 0xf         ; R4=15
4: r4 -= r0         ; R4=15 - (sym0&0xf)
5: r1 += r4         ; R1=fp(-16 + (sym0&0xf) + (15-(sym0&0xf)))
6: r0 = *(u8 *)(r1 +0) 

; off = -16 + (sym0&0xf) + (15-(sym0&0xf))
; Refinement condition: -16 <= off < 0



Refinement Condition
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• Refine the abstraction to just enough to continue, i.e., safe bound 
• Assert the symbolic state is within the safe bound, i.e., refinement condition 
• The refinement is accepted if the condition holds

R1: off = -16 + (sym0&0xf) + (15-(sym0&0xf))
Refinement condition: -16 <= off < 0

R1: fp(off=-16,smin=0, smax=30)
OOB Condition: smin+off < -16 or smin+off>-1 or smax+off+sz > 0

smax+off+sz<=0
Hence: smax refined to -(off+sz) = -(-16+1), i.e., 15
R1_w=fp(off=-16,smax=15)



Verifier

Well, prove it!

Happy user

Proved!

Proof

ProduceValidate

Produce Prove
(  >> 1)sym ≤ 4 ∧ sym ≤ 9

Refinement Condition



Proof
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• Prove the condition representing the refinement 
• Each possible value contained in the symbolic expression satisfies the condition 

• Essentially, the problem of satisfiability (SMT, a well established field) 
• Proof contains a sequence of steps, each step is a small, simple proof rule 
• A proof checker only accepts well-formed proof, and the proof is done by contradiction

Proof ::= Step+ 
Step  ::= Rule Premise* Arg* 
Rule  ::= Resolution | Modus Ponens | …

Prove : 
Assume  

 
 

ϕ(x)
¬ ϕ(x)

¬ϕ(x) ⟹ ϕj(x) (rulek)
ϕj(x) ⟹ false

Resolution: 
  
(A ∨ l) (B ∨ ¬l)

A ∨ B



Proof
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• Converting the refinement condition into SMT formula and querying the SMT solver

off = -16 + (sym0&0xf) + (15-(sym0&0xf))
Prove: off >= -16

Proof:
Assume off < -16
Rewrite -16 + (sym0&0xf) + 15 - (sym0&0xf)

  = -16 + 15 = -1
Trans off = -1
Refl  -16 = -16
Cong  (off < -16) = (-1 < -16)
Rewrite (-1 < -16) = false
Trans (off < -16) = false

Q.E.D.

Proof ::= Step+ 
Step  ::= Rule Premise* Arg* 
Rule  ::= Resolution | Modus Ponens | …

Prove : 
Assume  

 
 

ϕ(x)
¬ ϕ(x)

¬ϕ(x) ⟹ ϕj(x) (rulek)
ϕj(x) ⟹ false

R1: off = -16 + (sym0&0xf) + (15-(sym0&0xf))
Refinement condition: -16 <= off < 0



32

; note: in practice we use QF_BV

(set-logic ALL)

(set-option :produce-proofs true)

(declare-const sym0 Int)

(assert (and (>= sym0 0) (<= sym0 15)

    (< (+ -16 (- 15 sym0) sym0) -16)))

(check-sat)

(get-proof)
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(define @t1 () (- 15 sym0)) 
(define @t2 () (+ -16 @t1 sym0)) 
(define @t3 () (< @t2 -16)) 
(define @t4 () (+ 15 (* -1 sym0))) 
(assume @p1 (and (<= sym0 0) (<= sym0 15) @t3))                           
(step @p2 :rule trust :premises () :args ((= (not true) false)))  
(step @p3 :rule trust :premises () :args ((= (>= -1 -16) true))) 
(step @p4 :rule refl :args (-16))                                                         ; p4: -16 = -16 
(step @p5 :rule trust :premises () :args ((= (+ -16 @t4 sym0) -1)))  ; p5: -16 + t4 + sym0 = -1 
(step @p6 :rule refl :args (sym0))                                                      ; p6: sym0 = sym0 
(step @p7 :rule trust :premises () :args ((= @t1 @t4)))                     ; p7: t1 = t4 
(step @p8 :rule nary_cong :premises (@p4 @p7 @p6) :args (+))    ; p8: -16+t1+sym0 = -16 + t4 + sym0 
(step @p9 :rule trans :premises (@p8 @p5))                                     ; p9: -16+t1+sym0 = -1 
(step @p10 :rule cong :premises (@p9 @p4) :args (>=))                  ; p10: (-16+t1+sym0 >= -16) = (-1 >= -16) 
(step @p11 :rule trans :premises (@p10 @p3))                                 ; p11: (-16+t1+sym0 >= -16) = true  
(step @p12 :rule cong :premises (@p11) :args (not))                        ; p12: not (-16+t1+sym0 >= -16) = not true 
(step @p13 :rule trans :premises (@p12 @p2))                                 ; p13: not (-16+t1+sym0 >= -16) = false 
(step @p14 :rule trust :premises () :args ((= @t3 (not (>= @t2 -16))))) ; p14: t3 = not (016+t1+sym0>=-16) 
(step @p15 :rule trans :premises (@p14 @p13))                               ; p15: t3 = false 
(step @p16 :rule and_elim :premises (@p1) :args (2))                       ; p16: t3 
(step @p17 false :rule eq_resolve :premises (@p16 @p15))            ;  p17: false



Complexity 
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• Essentially the satisfiability modulo theories (SMT) problem 
• Reasoning unsatisfiable quantifier-free bitvec formula (QF_BV) 
• QF_BV reduced to Boolean satisfiability (SAT) 
• SAT is NP-complete, but decidable 
• In practice, solvers can prove most formulas very efficiently 
• Proof checking is a linear-time scan

Refinement 
Condition

Proof 
Checking

O(n)

Kernel Space

Condition 
Proving

NP-complete

User Space

Precision of 
Symbolic 
Execution

Benefit



Summary 
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• Collect symbolic representation and generate refinement condition in the kernel 
• Prove the condition in user space, NP-complete but decidable and the solver is mostly efficient 
• Accept the refinement only after a linear-time proof-checking  
• Since symbolic “domain” is the most accurate domain, we can (hopefully) handle many cases once for all

Instruction

Verify

Validator
Refinement

Proof
Solvers

Loader Next
safe

unsafe

Refined Abs

valid

Kernel SpaceUser Space

Condition
Refinement



Implementation
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• BCF: BPF Certificate Format 
• Provide a buffer for the refinement condition 
• Set the flags and fd if proof is requested 
• Prove in user space and provide the proof in the buf 
• Set the proof size in `true_size` and the flag 
• bcf_fd enables resuming the last check



Implementation
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• Handle the BCF request in user space 
• Convert the refinement condition into SMT formulas 
• Query the solver and collect the proof 
• Convert the proof into BCF format 
• Provide the proof by setting the flag and bcf_fd



Implementation
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• Handle the BCF request in user space 
• Convert the refinement condition into SMT formulas 
• Query the solver and collect the proof 
• Convert the proof into BCF format 
• Provide the proof by setting the flag and bcf_fd



Implementation
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• Start BCF tracking to collect symbolic state if requested 
• do_check() is adapted to follow the current path only 
• Symbolic state is collected mostly with bcf_alu() 
• Preserve the env behind the bcf_fd 
• Copy to user, set the flag and bcf_fd, and wait for the proof



Implementation
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• Start BCF tracking to collect symbolic state if requested 
• do_check() is adapted to follow the current path only 
• Symbolic state is collected mostly with bcf_alu() 
• Preserve the env behind the bcf_fd 
• Copy to user, set the flag and bcf_fd, and wait for the proof



Implementation
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• Start BCF tracking to collect symbolic state if requested 
• do_check() is adapted to follow the current path only 
• Symbolic state is collected mostly with bcf_alu() 
• Preserve the env behind the bcf_fd 
• Copy to user, set the flag and bcf_fd, and wait for the proof



Implementation
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• Resume the last check if bcf_fd valid 
• Validate the proof with an in-kernel proof check 
• Continue with the refined state if the proof is accepted 
• Check the rest of the program



Demo



Thank you!


