
Improving bpftrace reliability
Daniel Xu



Agenda

● Philosophy
● Techniques
● Current focus



What is reliability?

● Abstract and context dependent
● For bpftrace, consider this:

○ You have a problem
○ You use bpftrace to troubleshoot/debug it
○ You don’t want a second problem



No second problems

● Clear error if something is not possible
● Principle of least surprise
● Misleading data is the worst outcome



Challenges

● Complex intersection between compiler, language design, kernel, and BPF
○ LLVM API changes often
○ LLVM IR is subtle and tricky to learn
○ Language needs to be suitable for casual use yet powerful enough to develop tools
○ Kernel is tough environment, lots of gotchas (faulting memory, NMIs, etc.)
○ Kernel internals frequently change
○ BPF rapidly evolves, need to keep up in order to reap benefits

● Open source environment
○ No hiring powers (eg. no full time QA team possible)
○ Friendliness to new contributors (to reap bottom up innovation)
○ Have to work with what you got (Github)



No silver bullet



Our solution

● Holistic approach
● Heavy investment in CI
● Why?

○ Lever on entire project
○ Automated feedback for contributors
○ Increases development velocity

■ Speeds up reviews - maintainers can focus on code review
■ Refactor / cleanup with confidence
■ Main branch always release ready

○ Can run matrix of configurations (LLVM, kernel, compiler, etc.)
○ Mechanism to test almost all possible behavior (in our domain)
○ Can codify learned lessons



Typical challenges with CI

● Slow
● Non-reproducible
● Flakiness
● Requires highly specific environment



Nix-based CI



Testing



Testing status



By the numbers

● ~560 unit tests
● ~663 runtime tests
● ~16 clang-tidy lints
● ~174 GH code scanning checks



bpftrace/tests/runtime



bpftrace/tests/codegen



bpftrace/tests/codegen



CodeQL



Stack allocations

Looks like the BPF stack limit is exceeded. Please move large on 
stack variables into BPF per-cpu array map. For non-kernel uses, the 
stack can be increased using -mllvm -bpf-stack-size.

● Stack is currently precious resource
● Some types sizes scale with work being done (strings)
● Such allocations need to be moved onto percpu scratch map

○ https://github.com/bpftrace/bpftrace/issues/3431

https://github.com/bpftrace/bpftrace/issues/3431


Dropped events

● Probes may not always be safe to run in kernel
○ This is fine - fundamental limitation

● But all missed events _must_ be reported
● https://github.com/bpftrace/bpftrace/issues/835

https://github.com/bpftrace/bpftrace/issues/835


Map lookup null elisions

● Scratch maps are BPF_MAP_TYPE_PERCPU_ARRAY
○ Currently null checks on lookup are required, even when key is statically known

■ Failure branch just returns out of prog
○ Opportunity for codegen bugs to lose events

● https://lore.kernel.org/bpf/cover.1726458273.git.dxu@dxuuu.xyz/T/#u

https://lore.kernel.org/bpf/cover.1726458273.git.dxu@dxuuu.xyz/T/#u


Comments/questions


