Improving bpftrace reliability

Daniel Xu

Agenda

e Philosophy
e Techniques
e Current focus

What is reliability?

e Abstract and context dependent

e For bpftrace, consider this:
o You have a problem
o You use bpftrace to troubleshoot/debug it
o You don’t want a second problem

No second problems

e Clear error if something is not possible
e Principle of least surprise
e Misleading data is the worst outcome

Challenges

e Complex intersection between compiler, language design, kernel, and BPF
LLVM API changes often

LLVM IR is subtle and tricky to learn

Language needs to be suitable for casual use yet powerful enough to develop tools
Kernel is tough environment, lots of gotchas (faulting memory, NMls, etc.)

Kernel internals frequently change

BPF rapidly evolves, need to keep up in order to reap benefits

e Open source environment
o No hiring powers (eg. no full time QA team possible)

o Friendliness to new contributors (to reap bottom up innovation)
o Have to work with what you got (Github)

o o0 O O O O

(©) Integer assignment types don't get matched to the variable type @ -
#3415 by jordalgo was closed 5 days ago

N O S i Ive r b u I I et © Failed LLVM Assertion with Nested For-Loops Using Variable Context@

#3307 by ajor was closed on Jul 16 l‘1L-> v0.22

© misaligned stack access off (0x0; 0x0)+0+-23 size 8 -

#3294 by mtijanic was closed on Jul 8

©® min/max aggregations are broken @ -

#3286 by jordalgo was closed on Jul 29

© Attaching to non-existing uprobes fails (0D priority: high reliability

#3235 by viktormalik was closed on Jun 20

© btf_type_tag attributes cause problems with member dereferencing -
#3221 by tyroguru was closed on Jun 18

© cCrash when assigning a record type to map @-
#3218 by danobi was closed on Jun 5

© Crash when looping over map containing avg() D reliability
#3216 by danobi was closed on Jun 28

© Data corruption when using printf and/or if on an associative-array map-
#3194 by dkogan was closed on Jun 6

© Assigning string literals to variables of different size doesn't clear old data - -
#3172 by tnovak was closed on May 17

© Logging errors results in abnormal termination (abort) -
#3163 by ajor was closed on May 23 CP v0.21.0

Our solution

e Holistic approach
e Heavy investmentin ClI
e Why?
o Lever on entire project
o Automated feedback for contributors
o Increases development velocity
m Speeds up reviews - maintainers can focus on code review
m Refactor / cleanup with confidence
m Main branch always release ready
Can run matrix of configurations (LLVM, kernel, compiler, etc.)
Mechanism to test almost all possible behavior (in our domain)
Can codify learned lessons

O O O

Typical challenges with ClI

Slow

Non-reproducible

Flakiness

Requires highly specific environment

Nix-based CI

flake.nix

"l want to build/test locally" "l want to quickly build from master" "I need to exercise every configuration”
Developer User /
Nix Content

—>

(bit-for-bit identical environment, any linux system)

addressed

cache

Static binaries

(Appimage)

|
7

Development

environment

e Unit tests End-to-end tests

g

nix build .#appimage

nix develop .#bpftrace-llvm18

nix develop .#bpftrace-llvm17

Testing

Tricky things that are easy to
miss and not practical to test

Custom linters (codeq|,
semgrep)

Review (guidelines, checklists)

/ LTS kernels

End to end tests (runtime, vmtest)

ASAN and UBSAN enabled
Unit tests and linters (semantic analyser, codegen, parser, BTF
handling, type propagation, clang-tidy, GH code scanning)

Testing status

Tricky things that are easy to
miss and not practical to test

Custom linters (SN
semgreq:

Review (guidelines, checklists)

/
End to end tests (runtime, Uifitest)

BSAN and [BEEEN cnabled

Unit tests and linters (semantic analyser, codegen, parser, BTF
handling, type propagation, Glang-idy, GH code scanning)

By the numbers

~560 unit tests

~663 runtime tests

~16 clang-tidy lints

~174 GH code scanning checks

bpftrace/tests/runtime

NAME Implicit truncation of ints
PROG BEGIN{ $a = (int16)0; $a = 2; $b = (int8)3; $b = -100; print(($a, $b)); exit(); }

EXPECT (2, -100)
o I

runtime-tests.sh

Controlled guest kernel

.)
\C : _/

; ModuleID = 'bpftrace'

source_filename = "bpftrace"

target datalayout = "e-m:e-p:64:64-164:64-1128:128-n32:64-5128"

target triple = "bpf-pc-linux"
bpftrace/teStS/COd egen %'"struct map_t" = type { ptr, ptr, ptr, ptr }

%"struct map_t.e" = type { ptr, ptr }

%"struct map_t.1" = type { ptr, ptr, ptr, ptr }

@LICENSE = global [4 x i8] c"GPL\eO®", section "license"

@AT_x = dso_local global %"struct map_t" zeroinitializer, section ".maps", !dbg !0

@ringbuf = dso_local global %"struct map_t.0" zeroinitializer, section ".maps", !dbg !22
@event_loss_counter = dso_local global %"struct map_t.1" zeroinitializer, section ".maps", !dbg !36

; Function Attrs: nounwind

TEST(COdegen, bltShift_left) declare i64 @llvm.bpf.pseudo(i64 %0, i64 %1) #0

{ define i64 @kprobe_f_1(ptr %0) section "s_kprobe_f_1" !dbg 141 {
entry:
test("kprobe:f { @x = 1 << 10; }" il a et U B
4 ' %"@x_key" = alloca i64, align 8
call void @llvm.lifetime.start.po(i64 -1, ptr %"@x_key")
store i64 0, ptr %"@x_key", align 8
call void @llvm.lifetime.start.p0(i64 -1, ptr %"@x_val")
NAME) . store 164 1024, ptr %"@x_val", align 8
’ %update_elem = call i64 inttoptr (i64 2 to ptr)(ptr @AT_Xx, ptr %"@x_key", ptr %"@x_val", i64 0)
call void @llvm.lifetime.end.p®(1i64 -1, ptr %"@x_val")
} call void @llvm.lifetime.end.p0(i64 -1, ptr %"@x_key")
ret i64 ©

; Function Attrs: nocallback nofree nosync nounwind willreturn memory(argmem: readwrite)
declare void @llvm.lifetime.start.p0(i64 immarg %@, ptr nocapture %1) #1

; Function Attrs: nocallback nofree nosync nounwind willreturn memory(argmem: readwrite)
declare void @llvm.lifetime.end.p0(i64 immarg %0, ptr nocapture %1) #1

attributes #0 = { nounwind }

attributes #1 = { nocallback nofree nosync nounwind willreturn memory(argmem: readwrite) }

; ModuleID = 'bpftrace'

source_filename = "bpftrace"

target datalayout = "e-m:e-p:64:64-164:64-1128:128-n32:64-5128"

target triple = "bpf-pc-linux"
bpftrace/teStS/COd egen %'"struct map_t" = type { ptr, ptr, ptr, ptr }

%"struct map_t.e" = type { ptr, ptr }

%"struct map_t.1" = type { ptr, ptr, ptr, ptr }

@LICENSE = global [4 x i8] c"GPL\eO®", section "license"

@AT_x = dso_local global %"struct map_t" zeroinitializer, section ".maps", !dbg !0

@ringbuf = dso_local global %"struct map_t.0" zeroinitializer, section ".maps", !dbg !22
@event_loss_counter = dso_local global %"struct map_t.1" zeroinitializer, section ".maps", !dbg !36

; Function Attrs: nounwind

TEST(COdegen, bltShift_left) declare i64 @llvm.bpf.pseudo(i64 %0, i64 %1) #0

{ define i64 @kprobe_f_1(ptr %0) section "s_kprobe_f_1" !dbg 141 {
entry:
%"@x_val" = alloca i64, align 8
test("kprObe:f { @x - 1 << 10; }", %"@x_key" = alloca i64, align 8
call void @llvm.lifetime.start.po(i64 -1, ptr %"@x_key")
store i64 0, ptr %"@x_key", align 8
call void @llvm.lifetime.start.p0(i64 -1, ptr %"@x_val")

NAME) ; [store 164 1024, ptr %"@x_val", align 8

%update_elem = call i64 inttoptr (i64 2 to ptr)(ptr @AT_Xx, ptr %"@x_key", ptr %"@x_val", i64 0)
call void @llvm.lifetime.end.p®(1i64 -1, ptr %"@x_val")
} call void @llvm.lifetime.end.p0(i64 -1, ptr %"@x_key")
ret i64 ©

; Function Attrs: nocallback nofree nosync nounwind willreturn memory(argmem: readwrite)
declare void @llvm.lifetime.start.p0(i64 immarg %@, ptr nocapture %1) #1

; Function Attrs: nocallback nofree nosync nounwind willreturn memory(argmem: readwrite)
declare void @llvm.lifetime.end.p0(i64 immarg %0, ptr nocapture %1) #1

attributes #0 = { nounwind }

attributes #1 = { nocallback nofree nosync nounwind willreturn memory(argmem: readwrite) }

CodeQL

import cpp

from Membervariable member

where

member .getNamespace().getName() = "bpftrace" and

member .getDeclaringType().getAMemberFunction().getName() = "serialize" and

not exists(VvariableAccess va | va.getEnclosingFunction().getName() = "serialize" | va.getTarget() = member)
select

member,

"Member is not being serialized in a serialized class",

member .getLocation().getFile().getBaseName()
$ codeql query run --database ~/scratch/codeql/bpftrace-db queries/UnserializedMember.ql

[...1]

| member | coll | col2

cgroup_path_args Member is not being serialized in serialized class required_resources.

skboutput_args_ Member is not being serialized in serialized class required_resources.

helper_error_info Member is not being serialized in serialized class required_resources.

str_buffers Member is not being serialized in serialized class

Member is not being serialized in serialized class required_resources.

h

h

h

required_resources.h

watchpoint_probes h
h

probes_using_usym Member is not being serialized in serialized class required_resources.

_ serialized class types.h
ts_mode Member is not being serialized in serialized class types.h
need_expansion Member is not being serialized in serialized class types.h

expected_types_ Member is not being serialized in serialized class format_string.h

parts_ Member is not being serialized in serialized class format_string.h

Q0 2 2 2 DD DD DD

| |
| |
| |
| |
| |
| |
| btf_type_tags | Member is not being serialized in
| |
| |
| |
| |
| |

allow_override Member is not being serialized in serialized class struct.h

Stack allocations

Looks like the BPF stack limit is exceeded. Please move large on
stack variables into BPF per-cpu array map. For non-kernel uses, the
stack can be increased using -mllvm -bpf-stack-size.

e Stack is currently precious resource
e Some types sizes scale with work being done (strings)

e Such allocations need to be moved onto percpu scratch map
o https://qithub.com/bpftrace/bpftrace/issues/3431

https://github.com/bpftrace/bpftrace/issues/3431

Dropped events

e Probes may not always be safe to run in kernel
o This is fine - fundamental limitation

e But all missed events _must_ be reported
e https://github.com/bpftrace/bpftrace/issues/835

https://github.com/bpftrace/bpftrace/issues/835

Map lookup null elisions

e Scratch maps are BPF_MAP_TYPE PERCPU_ARRAY

o Currently null checks on lookup are required, even when key is statically known
m Failure branch just returns out of prog
o Opportunity for codegen bugs to lose events

e https://lore.kernel.ora/bpf/cover.1726458273.qit.dxu@dxuuu.xyz/T/#u

https://lore.kernel.org/bpf/cover.1726458273.git.dxu@dxuuu.xyz/T/#u

Comments/questions

