
Agni: Fast Formal
Verification of the Verifier's
Range Analysis

Harishankar Vishwanathan Rutgers U.)

Matan Shachnai Rutgers U.)

Paul Chaignon Isovalent)
Santosh Nagarakatte Rutgers U.)

Srinivas Narayana Rutgers U.)

1

https://lpc.events/event/18/contributions/1937/author/2923
https://lpc.events/event/18/contributions/1937/author/2924
https://lpc.events/event/18/contributions/1937/author/2920
https://lpc.events/event/18/contributions/1937/author/2921
https://lpc.events/event/18/contributions/1937/author/2922

⬢ Agni recap
⬢ Solvers are slow
⬢ Divide-and-conquer

⬢ Agniʼs CI
⬢ Conclusion

Agni

2

⬢ Agni recap
⬢ Solvers are slow
⬢ Divide-and-conquer

⬢ Agniʼs CI
⬢ Conclusion

Agni

3

Agni Recap

● Goal: Automated formal verification of the verifier’s range analysis

● Verifier tracks register and stack slots with 5 abstract domains:
○ 4 interval domains (u32/u64, signed/unsigned)
○ 1 bitwise domain, tums

● Updates on ALU & JMP operations
○ First, each abstract value is independently updated
○ Then, abstract values learn from one another

4

Agni Recap

1. Extracts the verifier functions of interest

2. Adds some glue code:
a. To remove writes into global verifier state
b. To specialize functions for each ALU/JMP operation
c. To replace LLVM builtins

3. Compiles to LLVM IR

4. Converts the LLVM IR into SMT formula

5. Adds soundness conditions

6. Solve with Z3 solver!

5

Agni Recap

● Also able to synthetize PoCs for soundness violations

● See Hari’s talk at Linux Plumbers 2023 for details and past results

6

https://lpc.events/event/17/contributions/1590/

⬢ Agni recap
⬢ Solvers are slow
⬢ Divide-and-conquer

⬢ Agniʼs CI
⬢ Conclusion

Agni

7

● Run regularly against latest kernels and patchsets

● Challenges:
○ Needs to be fast: at most a few hours

○ Needs to be maintainable: no need to update Agni for every kernel

Agni: Goal

8

● Solving starting taking days,
then weeks

Solvers are Slow!

9

Kernel version Runtime

v4.14 2.5h

v5.5 2.5h

v5.9 4h

v5.13 10h

v5.19 36h

v6.3 36h

v6.4 several weeks

v6.5 timeout

v6.6 timeout

v6.7 timeout

v6.8 timeout

"Fixing Latent Unsound Abstract Operators in the eBPF Verifier of the Linux Kernel", SAS’24

https://people.cs.rutgers.edu/~sn349/papers/sas24-preprint.pdf

● The logic for one operation is small
○ Ex. ~60 lines of C for BPF_AND (mostly scalar_min_max_and)

Why is Solving Slow?

10

https://elixir.bootlin.com/linux/v6.11/C/ident/scalar_min_max_and

● The logic for one operation is small
○ Ex. ~60 lines of C for BPF_AND (mostly scalar_min_max_and)

● But reg_bounds_sync is also executed after each per-operation logic
○ It tends to be a bit to a lot more complex than the per-operation logic

○ Runtime increases linked to reg_bounds_sync becoming “smarter”

● Solver runtime tends to increase exponentially with size of input formulas

Why is Solving Slow?

11

https://elixir.bootlin.com/linux/v6.11/C/ident/scalar_min_max_and

⬢ Agni recap
⬢ Solvers are slow
⬢ Divide-and-conquer

⬢ Agniʼs CI
⬢ Conclusion

Agni

12

● Hari et al. devised a solution: divide-and-conquer
○ That is, verify reg_bounds_sync‘s soundness separately

● reg_bounds_sync AND per-operation logic are sound ⇒ the whole is sound
○ Otherwise, we can’t deduce anything!

Divide-and-conquer

13

● Problem: Some per-operation logic is unsound, so can’t deduce anything
○ (Unless we solve the whole, but too long)

Divide-and-conquer

14

● Problem: Some per-operation logic is unsound, so can’t deduce anything
○ (Unless we solve the whole, but too long)

● Fixed by Hari et al. in v6.10 👇

Divide-and-conquer

15

https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next.git/commit/?id=1f586614f3ff
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next.git/commit/?id=1f586614f3ff

● Back in business!

● New –modular mode to verify reg_bounds_sync separately

● All explained in new SAS’24 paper!

Divide-and-conquer

16

https://people.cs.rutgers.edu/~sn349/papers/sas24-preprint.pdf

● Back in business!

● New –modular mode to verify reg_bounds_sync separately

Divide-and-conquer

17

https://github.com/bpfverif/agni/pull/61

● Per-operation OR reg_bounds_sync unsound ⇒ can’t deduce anything

● Not an issue as long as:
○ Per-operation functions (ex. scalar_min_max_and) stay sound

AND
○ reg_bounds_sync stays sound

Divide-and-conquer

18

⬢ Agni recap
⬢ Solvers are slow
⬢ Divide-and-conquer

⬢ Agniʼs CI
⬢ Conclusion

Agni

19

● Building a CI for Agni
○ Test Agni itself
○ Test the kernel

● Covers bpf, bpf-next, and linus’s trees

● Runs once a day

● Has been running for a month

Agniʼs CI

20

https://github.com/bpfverif/agni/actions?query=event%3Aschedule

Agniʼs CI

21

https://github.com/bpfverif/agni/pull/61

Agniʼs CI

22

● It got worse again

https://github.com/bpfverif/agni/pull/61

● It got worse again

● More divide-and-conquer?

● Could verify
__update_reg_bounds,
__reg_deduce_bounds ,
__reg_bound_offset
separately

● Caveat: Need to keep them
independently sound

Agniʼs CI

23

https://github.com/bpfverif/agni/pull/61

⬢ Agni recap
⬢ Solvers are slow
⬢ Divide-and-conquer

⬢ Agniʼs CI
⬢ Conclusion

Agni

24

Conclusion

● Hardening Agni:
○ Reduce amount of glue code
○ More tests (ex. SMT equivalence check for PRs)
○ Keep reviewing CVEs for potential false negatives

● A small change in the verifier enabled a significant speed up
of the formal verification

25

Thanks !

26

https://fr.linkedin.com/in/paulchaignon/en
https://twitter.com/pchaigno
https://github.com/pchaigno
https://pchaigno.github.io

27

Appendix: Weakened Soundness Specification

28

● ~1y ago, a bug was found in verifier, missed by Agni because it never
happened at runtime (always-false branch)

● But it could happen under speculative execution (hence verifier check)

● Now supported by Agni behind a flag:
○ Weakened specification to also essentially follow both branches

○ See agni#15 for details

https://github.com/bpfverif/agni/issues/15

