nh ISOVALENT

The State of eBPF
Fuzzing

Paul Chaignon | @pchaigno
Software Engineer, Isovalent at Cisco

G ISOVALENT
Who Am I?

Paul Chaignon
Software Engineer @ Isovalent / Cisco
Datapath team for Cilium

Interested in BPF fuzzing for a while:
- First contributions to verifier after rebasing bpf-fuzzer
- Updating BPF descriptions in Syzkaller since 2019

https://pchaigno.github.io/

eBPF Fuzzing

® Syzkaller coverage
Recent improvements
Other approaches

® Finding a test oracle

@® Conclusion

G ISOVALENT
Syzkaller

e Well maintained and well integrated
o Lots of up-to-date syscall descriptions

o Continuously running and reporting bugs (syzbot)

e Code coverage guided fuzzer (kcov)
e Structured fuzzer: syzlang descriptions of syscalls
e Can find many bugs via kernel sanitizers (KASAN & co.)

e Runs full kernels in VMs

G ISOVALENT

Syzkaller's Coverage

Syzkaller finds many bugs in BPF
But doesn’t tell much on effectiveness

Code coverage is a better measure

WARNING in vmap_pages_range_noflush (2)

BUG: unable to handle kernel paging request in bpf prog A...
WARNING in sock_map_close (2)

possible deadlock in lock_timer_base

KASAN: slab-use-after-free Read in htab_map_alloc (2)
KASAN: stack-out-of-bounds Read in xdp_do_check flushed...
general protection faultin _dev_flush

general protection fault in bq flush to_queue
KASAN: slab-use-after-free Read in bq_xmit_all
general protection faultin _xsk map_flush
general protection faultin _cpu_map_flush
general protection fault in xdp do_generic_redirect
general protection fault in dev_map _redirect

stack segment fault in dev_hash_map_redirect
general protection fault in xdp do_redirect

stack segment fault in bpf xdp_ redirect

stack segment fault in cpu_map_redirect
WARNING in bpf lwt seg6_adjust_srh

possible deadlock in console_flush_all (2)
WARNING in skb_ensure_writable

INFO: task hung in bpf prog _dev_bound_destroy
possible deadlock in __sock_map_delete

general protection fault in bpf get attach_cookie_tracing ...
KASAN: slab-use-after-free Read in bpf link_free (2)
WARNING in sock_map _close

possible deadlock in sock hash_delete_elem (2)

Q ISOVALENT

Syzkaller’s Coverage

e From syzbot Coverage by code areas

80

e Rough aggregation

60

40

Coverage (%)

syscall.c te/tex maps btf verifier helpers

Code area

G ISOVALENT

Syzkaller's Coverage

From syzbot

Rough aggregation

Closer to syscall is
better

BTF desc. is outdated

Helpers are hard to
reach

Coverage by code areas

Coverage (%)

80

76

6o 66
61

40

20

syscall.c te/tex maps

Code area

63

52

42

btf verifier helpers

G ISOVALENT
Challenges of Fuzzing BPF

e Many dependencies between various part of the input

O

O O O O

Ex. program type and allowed helpers

Ex. sizes between map creation and map value load
Ex. jump offset and program structure

Ex. ordering between write and read of RO

Ex. BTF kfunc prototypes and kfunc calls

e Hard to describe with a simple description language

O

Don’t want to reimplement the verifier in the fuzzer 2

e Several layers to pass:

O

Ex. kfunc call requires valid BTF + valid program + valid exec syscall

eBPF Fuzzing

@® Syzkaller coverage

© Recent improvements
@ Other approaches

® Finding a test oracle

@® Conclusion

G ISOVALENT

Recent Improvements
e Counting all covered helpers,
even partially covered

e Covered helpers doubled in a
year (+55)

Covered helpers

125

100

75

50

25

0

Number of covered helpers

07/2023

10/2023

01/2024

Month

04/2024

07/2024

10

G ISOVALENT

Recent Improvements
e Counting all covered helpers,
even partially covered

e Covered helpers doubled in a
year (+55)

e Describing full helper calls
paid off

e Described only 8 helpers,
syzkaller guessed the rest

Covered helpers

125

100

75

50

25

0

Number of covered helpers

07/2023

10/2023

01/2024

Month

04/2024

07/2024

11

G ISOVALENT

Recent Improvements

e Syzlang becoming more expressive with conditional fields

e Enabled more precision in BPF descriptions

link_create_netkit {
relative_link_fd
relative_prog_fd
relative_link_id
relative_prog_id
exp_revision

} [packed]

fd_bpf_link (if[value[bpf_link_create_arg_t:flags] & BPF_F_LINK_OR_ID == BPF_F_LINK])
fd_bpf_prog (if[value[bpf_link_create_arg_t:flags] & BPF_F_LINK_OR_ID == 0])

bpf_link_id (if[value[bpf_link_create_arg_t:flags] & BPF_F_LINK OR_ID == BPF_F_LINK OR_ID])
bpf_prog_id (if[value[bpf_link_create_arg_t:flags] & BPF_F_LINK OR_ID == BPF_F_ID])

bpf_revision

12

AL MM L AL LAV AN NN

eBPF Fuzzing

® Syzkaller coverage

@ Recent improvements
© Other approaches

® Finding a test oracle

@ Conclusion

13

G ISOVALENT

Running the Verifier in Userspace

e bpf-fuzzer by Facebook: first-ever eBPF fuzzer
o Uses libfuzzer
o Verifier executed in userspace with lots of glue code

e kBdysch by Anatoly Trosinenko
o UsesAFL
o Relies on LKL instead of manual port to userspace

e High maintenance cost!
o Did find multiple bugs though

14

G ISOVALENT

Buzzer: Tailored Fuzzing for BPF

e Runs the kernel in VMs like syzkaller

e Somewhat focus on the verifier

e BPF-specific fuzzing strategies
o Attempting out-of-bound map writes
o Checking verifier logs
o Or plain old coverage-based

e Found two vulnerabilities so far

e Focus of the next talk!

eBPF Fuzzing

® Syzkaller coverage

@ Recent improvements
@® Other approaches

® Finding a test oracle

@ Conclusion

16

G ISOVALENT

We're Missing a Test Oracle!

e Good at finding memory errors, crashes, deadlocks, kernel warnings, etc.

e Struggle to find verifier bypasses
o Because verifier bypasses are typically silent

e Need a test oracle for the verifier's soundness

17

G ISOVALENT

State Embeddings as a Test Oracle

e Hao Sun and Zhendong Su devised one test oracle for the verifier
e Turn silent soundness issues into loud verifier errors

e Published at OSDI'24

18

https://www.usenix.org/conference/osdi24/presentation/sun-hao

G ISOVALENT

State Embeddings as a Test Oracle

: *(u64*)(rlo -40) = -1
: rl = *(u64*)(rl10 -40)
= r2 =1

: if rl < 0 goto +1

N F2r =0

: exit

1. Start from accepted BPF program

o A W NP2 O

G ISOVALENT

State Embeddings as a Test Oracle

:r9 =0
: *(u64*)(rlo -40) = -1
: rl = *(u64*)(rlo -40)
:r2 =1

: if rl < 0 goto+l

1 r2=0
:r9 +=rl
1 r9 *= r2
: if r9 != -1 goto+l
: verifier sink()
10: exit

1. Start from accepted BPF program

2. Fold variables into single register

O O OO B WN PO

G ISOVALENT

State Embeddings as a Test Oracle

1 r9 =0

: *(u64*)(rlo -40) = -1
: rl = *(u64*)(rlo -40)
:r2 =1

: if rl < 0 goto+l
:r2=20

:r9 +=rl

1 r9 *= r2

: if r9 != -1 goto+l
: verifier sink()
10: exit

1. Start from accepted BPF program
2. Fold variables into single register

3. Trigger verifier error if folded value is as expected
a. Ex.write to R10

O OIN O U & W N =P O

G ISOVALENT

State Embeddings as a Test Oracle

1. Start from accepted BPF program

2. Fold variables into single register

3. Trigger verifier error if folded value is as expected
a. Ex.writeto R10

4. Modified program passes verifier implies:
a. concrete folded value € abstract folded value

b. Ex. -1 € verifier's view of R9

c. Thatis, unsoundness issue!

0: r9=0

1: *(u6d*)(rl0 -40) = -1
2: rl = *¥(u6d4*)(rlo -40)
3: 12 =1

4: if r1 < 0 goto+1l

5: 12 = 0

6: r9 +=rl

7: r9 *= r2

8: if r9 != -1 goto+l

9: verifier sink()

10: exit

22

eBPF Fuzzing

@® Syzkaller coverage

® Recent improvements
@ Other approaches

® Finding a test oracle

@® Conclusion

23

G ISOVALENT

Conclusion

e Help welcome for syzkaller descriptions!
o Lots to do, easy and harder stuff
o Very helpful & responsive maintainers
o Bugs as rewards

e [MO, we should converge approaches in syzkaller
o Better integration with the kernel (syzbot)

e How can we improve the status quo?
o Can we use state embeddings in syzkaller? In buzzer?

24

ISOVALENT

Thanks !

/1NN
AERR
uuwy

A\l /4

https://fr.linkedin.com/in/paulchaignon/en
https://twitter.com/pchaigno
https://github.com/pchaigno
https://pchaigno.github.io

