Towards Programmable Memory Management
with eBPF

Presented by Kaiyang Zhao <kaiyang2@cs.cmu.edu>

Carnegie Mellon University

Computer Science Department Computer Architecture /N _Operating Systems Group

Overview

e How eBPF can support programmable memory management
e Ample Memory Contiguity with Contiguitas
e Learned Virtual Memory

About me:

e |I'm a researcher on memory management
e Trying to solicit feedback on the high-level idea

eBPF for Programmable Memory Management

Programmability allows easy implementation of new ideas in MM

eBPF is a good vehicle for programmability

Implement the interfaces once, deploy many new MM policies later
Related work includes sched_ext (scheduling) and TCP-BPF (TCP tuning)

eBPF for Programmable Memory Management

Many possibilities. Areas that can use flexible policies:

e Where do new page allocations go (NUMA node, tiered memory, etc.)
e How many huge pages to give to an app and of what size
e Memory reclaim (anon/file split, which process/cgroup to target)

In this talk:

e Two examples from our recent work that could benefit from programmable
memory management

Why Memory Contiguity?

e Virtual memory overhead is severe and getting worse
e Up to 20% of CPU cycles have the page table walker active
e Most solutions to reduce the virtual memory overhead need contiguity

—Memory Capacity -TLB Entries
1

100s of GBs

10s of GBs 2-3K entries

Relative Capacity
= N W S 01 ON O O O

Gen 1 Gen 2 Gen 3 Gen 4 Gen 5
Server Generations

Why Memory Contiguity?

e Virtual memory overhead is severe and getting worse

e Most solutions to reduce the virtual memory overhead need contiguity
These solutions all need memory contiguity:

e Huge pages (THP, hugetlb)
e TLB coalescing (supported by ARM, RISC-V and AMD in current processors)
e Ongoing research in using contiguity to reduce the overhead

The goal:
e Being able to obtain as-large-as-needed contiguous memory after compaction

Unmovable Pages Prevent Compaction

Unmovable
Page

e One 4KB unmovable page makes compaction fail in a 2MB or 1GB range
e Only 0.19% of misplaced unmovable pages can block compaction completely
e They block contiguity from being recovered by compaction

Contiguitas — Improving ZONE_MOVABLE

Zone Movable Physical Address Space

e A movable zone where compaction will not be blocked by unmovables
o We already have ZONE_MOVABLE

e Make ZONE_MOVABLE suitable for containing most of the memory
e Proactively migrate movable pages out of other zones to ZONE_MOVABLE

o Compaction now can migrate pages to a different destination zone
o Reduces the need for unmovable zones to grow

Contiguitas — Resizing

e \Workload characteristics can change — may need to resize

e Empower an userspace agent to resize
o Export # pages scanned on behalf of movable or unmovable allocations during reclaim
o This approximates memory pressure. Can alternatively track memory pressure per type.

e Increasing the size of movable zone is best-effort
o But unmovable zones can always back movable base page allocations — don’t waste memory

Contiguitas — Results

e 10% of memory is covered by the unmovable zone initially
o Empirically determined by experiments at Meta

e Reliable THP and 1GB huge page allocation

e Up to 18% higher performance for Meta’s production workloads
Web: +10% from the fragmented case using THP

Web: +18% when using 1GB huge pages

Cache A: +10% using THP

Cache B: +7% using THP

e Patches

o https://lore.kernel.org/all/20230519123959.77335-1-hannes@cmpxchg.orqg/
o https://lore.kernel.org/linux-mm/20240306041526.892167-1-hannes@cmpxchg.org/
o https://lore.kernel.org/linux-mm/20240320024218.203491-1-kaivang2@cs.cmu.edu/

o O O O

* Contiguitas: The Pursuit of Physical Memory Contiguity in Datacenters, published on ISCA 2023

https://lore.kernel.org/all/20230519123959.77335-1-hannes@cmpxchg.org/
https://lore.kernel.org/linux-mm/20240306041526.892167-1-hannes@cmpxchg.org/
https://lore.kernel.org/linux-mm/20240320024218.203491-1-kaiyang2@cs.cmu.edu/

How Can MM Programmability Help

e A BPF program can hook to memory reclaim and decide whether to resize the
regions and by how much

e A BPF program can classify the expected lifetime of allocations and direct the
placement of pages such that fragmentation is reduced

Learned Virtual Memory — Overview

VA[47:39] | VA[47:39]£—:/A[38:30] VA[29:21]| VA[20:12] VA[ll:O]‘
i l i l PA
CR3 L; P> I Ty I Iy

To TLB

PGD P4D PUD PMD PTE
256 TB 512GB 1GB 2 MB 4 KB

e Linux assumes tree-like page table structures

e But recent work has shown that hash-based page table and more exotic
paging schemes have great potential

e Difficult to evaluate novel paging designs with a realistic OS

Learned Virtual Memory — Overview

An ongoing work of ours
Aims for single-memory-access page walk
Adapts to each application’s mapped virtual address space with learned indexes

Much higher coverage per byte of paging structure than radix page tables
o Utilizes better the precious hardware page walk cache

How Can MM Programmability Help

The key is to get rid of the assumption of the tree-based page tables.
Interfaces for implementing new paging schemes in BPF:

e Establish a mapping (a virtual page becomes mapped)
o An attachment point mm_map_page(VA)
o BPF program returns a pointer to the page table entry of the newly mapped page
e Remove a mapping (a virtual page becomes unmapped)
o An attachment point mm_unmap_page(VA)
e Find/update a mapping (returns the page table entry of a virtual page)

o An attachment point mm_get pte(VA)
o Returns a pointer to the page table entry

How Can MM Programmability Help

An example of adapting existing code in the kernel to use the new interfaces

For __handle_mm_fault() that is part of the page fault handler, the new workflow becomes:

1. Call mm_get pte(VA) to get the page table entry of the faulting address

a. Currently it's done by explicitly going level-by-level down the radix page table
b. Turn the page table lookup into a black box provided by a BPF program

2. ldentify the reason for the page fault (non-present page? write-protect? ...)
3. Perform the appropriate next steps

All code that interacts with page tables needs to be converted to use these 3 interfaces
e Anecdotally, it takes 10-20 person-months

How Can MM Programmability Help

e |If these 3 interfaces are provided and used in Linux, the vast majority of novel
paging schemes can be supported

e Tremendous benefits to the research community in prototyping and verifying
novel designs on Linux

Some practical challenges remain:

e Many paging schemes (e.g., hashed page tables) require the allocation and
management of a region of physical memory. Is it possible to support this in

eBPF?
e How to allow a eBPF program to communicate with HW (e.g., set CR3)?

Summary and Questions

e Optimizing memory management is becoming increasingly important
e One line of research creates novel designs that don’t exist on commercial hardware
o Being able to evaluate such designs on Linux is desirable

e Another line of research explores flexible policies in making decisions

1. Are more customizable policies and fewer assumptions about the paging scheme in
MM possible to support in Linux?
2. |Is eBPF the right vehicle for it?

