

First-Party kernel.org
Build Environments

Guillaume Tucker
gtucker@gtucker.io

Reviewed-by: Nathan Chancellor
nathan@kernel.org

mailto:gtucker@gtucker.io
mailto:nathan@kernel.org

Take me to your Compiler

Simple case with standard distro toolchain*:

make defconfig
make

*Terms and conditions apply for:
cross-compiling
Rust
Clang
eBPF kselftest
documentation
new features in linux-next
…

”
“ There are times where you may need access to

different versions of LLVM for building the kernel
instead of the one available through your
distribution, such as reproducing an issue only
visible with specific versions or gaining access to
a feature only available in a newer version.
- Slim LLVM toolchains for building the Linux kernel

State of the Art

kernel.org toolchain tarballs

GCC
+ cross-compilers

LLVM
+ Rust

Comprehensive
all architectures
recent versions
tailored for kernel builds

https://mirrors.edge.kernel.org/pub/tools/

”“ These compilers are only functional for kernel builds,
they cannot be used to build userspace code.

https://mirrors.edge.kernel.org/pub/tools/

State of the Art

Linaro tuxmake containers

$ tuxmake --runtime=docker --target=x86_64 --toolchain=korg-clang-18

Available as a service via TuxSuite

Default containers provided by Linaro

Alternative containers with kernel.org toolchains:
https://www.linaro.org/blog/tuxmake-building-linux-with-kernel-org-toolchains/

”“ TuxMake provides Docker container images to build
Linux kernels across various architectures and
toolchain combinations.

- stylesen ‘Tuxmake: Building Linux with kernel.org LLVM toolchains’

https://tuxsuite.com/
https://www.linaro.org/blog/tuxmake-building-linux-with-kernel-org-toolchains/

What’s the issue again?

Tarballs are nice but not super convenient
download, extract, install, adjust $PATH, remove, upgrade by hand

Not everything is included in tarballs
bash bc bison flex git libelf-dev libssl-dev make

Tarballs are uploaded by designated individuals (i.e. Arnd)
discoverability, traceability, ability for developers to contribute

Everybody* uses containers, mostly Docker, especially for automation

*except those who don’t, obviously

Toolchain Pipeline in the Sky

 docker build tools/containers/gcc/14.2/x86 -t registry.kernel.org/gcc:14.2-x86

󰝊nothing groundbreaking so far in 2024 (!)

build
toolchain

src

build
image

.deb .tar.gz

package

registry

Down to Earth

🚨 Vendor lock-in alert: GitLab, GitHub, GKE, Azure, AWS 🚨

OCI standard makes images vendor neutral
Harbor is a popular open-source registry

Note: images may also be saved as files for plain HTTP downloads (meh)

docker build tools/containers/gcc/14.2/x86 -t gcc:14.2-x86

docker save gcc:14.2-x86 | gzip > gcc-14.2-x86.gz

upload to web server, then to “pull”:

curl https://images.kernel.org/gcc-14.2-x86.gz | gunzip | podman load

↪ Git hooks on git.kernel.org to trigger builds?
↪ Other vendor-neutral solutions needed?

”“ I really don't want some kind of top-level CI
for the base kernel project.

- Linus Torvalds, kci-gitlab: Introducing GitLab-CI Pipeline for Kernel Testing

https://opencontainers.org/
https://goharbor.io/
https://lore.kernel.org/all/CAHk-=wixVy3WYvjbt43ZSrCqPDsS76QJQSkXFbbPsAOs1MCSAQ@mail.gmail.com/

Down to Earth

Business as Usual

Keep the current tarballs
no change to existing workflows

Add packages with meta-data
.deb, .rpm, Yocto

Add Containerfiles in upstream kernel tree (e.g. tools/containers)
entirely optional, backwards-compatible

Kbuild

Building upon first-party container images:

make CONTAINER=gcc:14.2-x86

Does this seem useful?
Raise your hand if you think so

Can it be implemented?
Kbuild is complex but working PoC (next slide)

💡Thanks Nathan for suggesting the Kbuild integration!

diff --git a/Makefile b/Makefile

index c6f549f6a4ae..e2a55162238d 100644

--- a/Makefile

+++ b/Makefile

@@ -1,3 +1,13 @@

+ifneq ($(CONTAINER),)

+PHONY := __all

+__all:

+%:

+ @echo RUNNING IN CONTAINER

+ @docker run -v $(PWD):/src -w /src \

+ $(CONTAINER) $(MAKE) \

+ $(subst CONTAINER=$(CONTAINER),,$(MAKEFLAGS)) \

+ $(GNUMAKEFLAGS) $(MAKECMDGOALS)

+else

 # SPDX-License-Identifier: GPL-2.0

 VERSION = 6

 PATCHLEVEL = 7

@@ -2051,3 +2061,4 @@ FORCE:

 # Declare the contents of the PHONY variable as phony. We keep
that

 # information in a variable so we can use it in if_changed and
friends.

 .PHONY: $(PHONY)

+endif # DOCKER

https://gitlab.com/gtucker/linux/-/commits/linux-6.7-make-container

$ make CONTAINER=gtucker/gcc-12:x86 defconfig

RUNNING IN CONTAINER

 HOSTCC scripts/basic/fixdep

 HOSTCC scripts/kconfig/conf.o

 HOSTCC scripts/kconfig/confdata.o

 HOSTCC scripts/kconfig/expr.o

 LEX scripts/kconfig/lexer.lex.c

 YACC scripts/kconfig/parser.tab.[ch]

 HOSTCC scripts/kconfig/lexer.lex.o

 HOSTCC scripts/kconfig/menu.o

 HOSTCC scripts/kconfig/parser.tab.o

 HOSTCC scripts/kconfig/preprocess.o

 HOSTCC scripts/kconfig/symbol.o

 HOSTCC scripts/kconfig/util.o

 HOSTLD scripts/kconfig/conf

*** Default configuration is based on 'x86_64_defconfig'

#

configuration written to .config

#

https://gitlab.com/gtucker/linux/-/commits/linux-6.7-make-container

Vielen Dank

