Remote Build Execution

for kernel developers

David Brazdil <david@source.dev>
Linux Plumbers Conference
Vienna, Sep 2024

Bource.dev

mailto:david@source.dev

Who am |

EBource.dev

Previously Engineer @ Google

e Linux contributor: pKVM for arm64
e Android Platform Security

e ART compiler

Now CTO @ source.dev

e Tooling for software maintenance of Android OS

e Driven by upcoming EU regulation - 7 years of support
e Exploring integration with KernelCl

e Fast, cheap builds enabler for automation

What is RBE

EBource.dev

Bazel

Open-source build system

Scalable to very large codebases
Hermetic and sandboxed by default
Caches shareable across team/org

Remote Build Execution

gRPC protocol for distributed builds and tests
Scalable to datacenter levels

Offload heavy computation from laptops and
workstations to servers

Consistent execution environment for developers

RBE infrastructure is widely available
e Open-source backends

e Self-hosted solutions

e Fully managed commercial offerings
[J

y - - Easy to switch between providers, avoiding lock-in
What’s in it

Non-Bazel build systems supported

for me? e Pants, Buck2 implement RBE natively

e reclient, buildbox: wrappers for common compilers,
including GCC and Clang

Performance!
e ~60% on x86 defconfig

EBource.dev

Open-source

backends

EBource.dev

BuildBarn'
BuildFarm?
BuildGrid®
NativeLink*

BuildBuddy®

Licence
Apache-2.0
Apache-2.0
Apache-2.0
Apache-2.0

MIT Expat *

Language

Go

Java

Python

Rust

Go

* open-core model, remaining features under enterprise license

1 https://github.com/buildbarn

2 https://github.com/bazelbuild/bazel-buildfarm

3 https://qgitlab.com/BuildGrid/buildgrid

4 https://github.com/TraceMachina/nativelink

5 https://github.com/buildbuddy-io/buildbuddy

more: https://bazel.build/community/remote-execution-services

Deployment
Kubernetes, Compose
Kubernetes, Helm
Compose
Kubernetes

Terraform

http://github.com/buildbarn
http://github.com/bazelbuild/bazel-buildfarm
http://gitlab.com/BuildGrid/buildgrid
https://github.com/TraceMachina/nativelink
https://github.com/buildbuddy-io/buildbuddy
https://bazel.build/community/remote-execution-services

RBE protocol

Basic operations

EBource.dev

service ContentAddressableStorage {
rpc FindMissingBlobs (FindMissingBlobsRequest)
returns (FindMissingBlobsResponse) {...}

rpc BatchUpdateBlobs (BatchUpdateBlobsRequest)
returns (BatchUpdateBlobsResponse) {...}

rpc BatchReadBlobs (BatchReadBlobsRequest)
returns (BatchReadBlobsResponse) {...}

https://github.com/bazelbuild/remote-apis

https://github.com/bazelbuild/remote-apis

message Command {
repeated string arguments;
repeated EnvironmentVariable environment_variables;
repeated string output_paths;

+
message Directory {
repeated FileNode files; // list of blobs
RBE prOtOCOI repeated DirectoryNode directories; // list of blobs
repeated SymlinkNode symlinks; // list of paths
Describing a build step ¥
message Action {
Digest command_digest; // Command blob

Digest input_root_digest; // Directory blob

EO urce. d ev https://github.com/bazelbuild/remote-apis

https://github.com/bazelbuild/remote-apis

message ActionResult {
int32 exit_code;
Digest stdout_digest;
Digest stderr_digest;
repeated OutputFile output_files;

RBE protocol

service ActionCache {

.) rpc GetActionResult(GetActionResultRequest)

CaChlng build steps returns (ActionResult) {...}

rpc UpdateActionResult(UpdateActionResultRequest)
returns (ActionResult) {...}

EO urce. d ev https://github.com/bazelbuild/remote-apis

https://github.com/bazelbuild/remote-apis

message ExecuteRequest {
Digest action_digest;
bool skip_cache_lookup; // force execution
// hints to the backend

message ExecuteResponse {
ActionResult result;

RBE protocol

Remote execution service Execution {

// Returns a message stream that will eventually
// yield an ExecuteResponse message.
rpc Execute(ExecuteRequest)

returns (stream Operation) {...}

EO urce. d ev https://github.com/bazelbuild/remote-apis

https://github.com/bazelbuild/remote-apis

e Part of the Bazel project, Apache-2.0
o Initially developed as a replacement for Goma (deprecated)

e rewrapper - wrapper around common compilers
o gcc, clang, javac, metalava, d8, r8, typescript, ...
o Determines the input/output fileset

reCIient ... by parsing the command line arguments

... by processing dependencies (eg. header files, libs)

e reproxy - local / remote worker pool manager
o Configurable strategies for optimizing performance
o default: remote_local_fallback
o good for devs: racing

EO urce. d ev https://github.com/bazelbuild/reclient

https://github.com/bazelbuild/reclient

Architecture

rewrapper

rewrapper

make

rewrapper

reproxy

.

clang

CAS
ActionCache

clang

rewrapper

rewrapper

clang

Execute

|
client : server

Id.lld

Id.lld

Start an RBE backend on the local machine
- best to review paths/sizes 1in basic_cas.json
- Docker 1images are also provided

Building

$ git clone https://github.com/TraceMachina/nativelink

the kernel $ cd nativelink

$ bazelisk run nativelink —-- \
nativelink-config/examples/basic_cas.json

Start backend

EO urce. d ev https://github.com/bazelbuild/bazelisk

https://github.com/TraceMachina/nativelink
https://github.com/bazelbuild/bazelisk

Compile reclient

$ git clone https://github.com/bazelbuild/reclient
$ cd reclient
$ bazelisk run --config=clangscandeps \

BUiIding {{dzggfiﬁja;!itau ——
the kernel ceare rerony

Start frontend $ source <1pc2024>/envsetup
$ dist/bootstrap -re_proxy=$PWD/dist/reproxy \

-cfg=<1pc2024>/reproxy.cfg

EO urce. d ev https://github.com/bazelbuild/bazelisk

https://github.com/bazelbuild/reclient
https://github.com/bazelbuild/bazelisk

Building

the kernel

Run build

EBource.dev

Compile the kernel

cd linux

source <1lpc2024>/envsetup

make LLVM=1 CC=<1pc2024>/cc LD=<1pc2024>/1d defconfig
make LLVM=1 CC=<1pc2024>/cc LD=<1pc2024>/1d -j32

v n n n

Observe progress 1in reproxy
- expect to see errors from Kconfig probing

$ <reclient>/dist/reproxystatus

Reproxy (unix:///tmp/reproxy.sock) OK

Actions completed: 35 (10 cache hits, 25 remote executions)
Actions in progress: 32

EBource.dev

Builds need to be reproducible-ish
o CONFIG_RANDSTRUCT=y needs a constant seed
0 Documentation/kbuild/reproducible-builds.rst

Kconfig passes inputs/outputs via stdin/stdout
o This is not supported by the RBE protocol — run locally

Dependency scanner does not recognize .incbin in assembly
o Harder to fix for inline assembly
o However, heuristic to filter out such source files is cheap

Linux uses compiler flags not recognized by reclient (yet)

o eg.-Wp,-MD,<depfile>, expects linker invoked via clang

o Bit of a neverending whack-a-mole game

o Our team is developing a frontend which doesn’t suffer
from this problem

Questions? Thank you!

Try it out: https://qgitlab.com/sourcedotdev/Ipc2024

EBource.dev

https://gitlab.com/sourcedotdev/lpc2024

