
Remote Build Execution
for kernel developers

1

David Brazdil <david@source.dev>
Linux Plumbers Conference

Vienna, Sep 2024

mailto:david@source.dev

Previously Engineer @ Google
● Linux contributor: pKVM for arm64
● Android Platform Security
● ART compiler

Now CTO @ source.dev
● Tooling for software maintenance of Android OS
● Driven by upcoming EU regulation - 7 years of support
● Exploring integration with KernelCI
● Fast, cheap builds enabler for automation

2

Who am I

What is RBE

3

Bazel
● Open-source build system
● Scalable to very large codebases
● Hermetic and sandboxed by default
● Caches shareable across team/org

Remote Build Execution
● gRPC protocol for distributed builds and tests
● Scalable to datacenter levels
● Offload heavy computation from laptops and

workstations to servers
● Consistent execution environment for developers

What’s in it
for me?

RBE infrastructure is widely available
● Open-source backends
● Self-hosted solutions
● Fully managed commercial offerings
● Easy to switch between providers, avoiding lock-in

Non-Bazel build systems supported
● Pants, Buck2 implement RBE natively
● reclient, buildbox: wrappers for common compilers,

including GCC and Clang

Performance!
● ~60% on x86 defconfig

4

Open-source
backends

* open-core model, remaining features under enterprise license
1 https://github.com/buildbarn
2 https://github.com/bazelbuild/bazel-buildfarm
3 https://gitlab.com/BuildGrid/buildgrid
4 https://github.com/TraceMachina/nativelink
5 https://github.com/buildbuddy-io/buildbuddy
more: https://bazel.build/community/remote-execution-services

5

Licence Language Deployment

BuildBarn1 Apache-2.0 Go Kubernetes, Compose

BuildFarm2 Apache-2.0 Java Kubernetes, Helm

BuildGrid3 Apache-2.0 Python Compose

NativeLink4 Apache-2.0 Rust Kubernetes

BuildBuddy5 MIT Expat * Go Terraform

http://github.com/buildbarn
http://github.com/bazelbuild/bazel-buildfarm
http://gitlab.com/BuildGrid/buildgrid
https://github.com/TraceMachina/nativelink
https://github.com/buildbuddy-io/buildbuddy
https://bazel.build/community/remote-execution-services

RBE protocol

service ContentAddressableStorage {
 rpc FindMissingBlobs(FindMissingBlobsRequest)
 returns (FindMissingBlobsResponse) {...}

 rpc BatchUpdateBlobs(BatchUpdateBlobsRequest)
 returns (BatchUpdateBlobsResponse) {...}

 rpc BatchReadBlobs(BatchReadBlobsRequest)
 returns (BatchReadBlobsResponse) {...}
}

6
https://github.com/bazelbuild/remote-apis

Basic operations

https://github.com/bazelbuild/remote-apis

message Command {
 repeated string arguments;
 repeated EnvironmentVariable environment_variables;
 repeated string output_paths;
 ...
}

message Directory {
 repeated FileNode files; // list of blobs
 repeated DirectoryNode directories; // list of blobs
 repeated SymlinkNode symlinks; // list of paths
 ...
}

message Action {
 Digest command_digest; // Command blob
 Digest input_root_digest; // Directory blob
 ...
}

7
https://github.com/bazelbuild/remote-apis

RBE protocol
Describing a build step

https://github.com/bazelbuild/remote-apis

message ActionResult {
 int32 exit_code;
 Digest stdout_digest;
 Digest stderr_digest;
 repeated OutputFile output_files;
 ...
}

service ActionCache {
 rpc GetActionResult(GetActionResultRequest)
 returns (ActionResult) {...}

 rpc UpdateActionResult(UpdateActionResultRequest)
 returns (ActionResult) {...}
}

8
https://github.com/bazelbuild/remote-apis

RBE protocol
Caching build steps

https://github.com/bazelbuild/remote-apis

message ExecuteRequest {
 Digest action_digest;
 bool skip_cache_lookup; // force execution
 ... // hints to the backend
}

message ExecuteResponse {
 ActionResult result;
 ...
}

service Execution {
 // Returns a message stream that will eventually
 // yield an ExecuteResponse message.
 rpc Execute(ExecuteRequest)
 returns (stream Operation) {...}
}

9
https://github.com/bazelbuild/remote-apis

RBE protocol
Remote execution

https://github.com/bazelbuild/remote-apis

● Part of the Bazel project, Apache-2.0
○ Initially developed as a replacement for Goma (deprecated)

● rewrapper - wrapper around common compilers
○ gcc, clang, javac, metalava, d8, r8, typescript, …
○ Determines the input/output fileset

… by parsing the command line arguments
… by processing dependencies (eg. header files, libs)

● reproxy - local / remote worker pool manager
○ Configurable strategies for optimizing performance
○ default: remote_local_fallback
○ good for devs: racing

10

reclient

https://github.com/bazelbuild/reclient

https://github.com/bazelbuild/reclient

11

Architecture

client server

make

rewrapper

reproxyrewrapper

rewrapper

rewrapper

rewrapper

Execute

CAS
ActionCache

clang

clang

ld.lld

clang

ld.lld

Start an RBE backend on the local machine
- best to review paths/sizes in basic_cas.json
- Docker images are also provided

$ git clone https://github.com/TraceMachina/nativelink
$ cd nativelink
$ bazelisk run nativelink -- \
 nativelink-config/examples/basic_cas.json

12

Building
the kernel

https://github.com/bazelbuild/bazelisk

Start backend

https://github.com/TraceMachina/nativelink
https://github.com/bazelbuild/bazelisk

Compile reclient

$ git clone https://github.com/bazelbuild/reclient
$ cd reclient
$ bazelisk run --config=clangscandeps \
 //:artifacts_install -- \
 --destdir ./dist

Start reproxy

$ source <lpc2024>/envsetup
$ dist/bootstrap -re_proxy=$PWD/dist/reproxy \
 -cfg=<lpc2024>/reproxy.cfg

13

Building
the kernel

https://github.com/bazelbuild/bazelisk

Start frontend

https://github.com/bazelbuild/reclient
https://github.com/bazelbuild/bazelisk

Compile the kernel

$ cd linux
$ source <lpc2024>/envsetup
$ make LLVM=1 CC=<lpc2024>/cc LD=<lpc2024>/ld defconfig
$ make LLVM=1 CC=<lpc2024>/cc LD=<lpc2024>/ld -j32

Observe progress in reproxy
- expect to see errors from Kconfig probing

$ <reclient>/dist/reproxystatus
Reproxy(unix:///tmp/reproxy.sock) OK
Actions completed: 35 (10 cache hits, 25 remote executions)
Actions in progress: 32

14

Building
the kernel

Run build

15

The ugly

● Builds need to be reproducible-ish
○ CONFIG_RANDSTRUCT=y needs a constant seed
○ Documentation/kbuild/reproducible-builds.rst

● Kconfig passes inputs/outputs via stdin/stdout
○ This is not supported by the RBE protocol → run locally

● Dependency scanner does not recognize .incbin in assembly
○ Harder to fix for inline assembly
○ However, heuristic to filter out such source files is cheap

● Linux uses compiler flags not recognized by reclient (yet)
○ eg. -Wp,-MD,<depfile>, expects linker invoked via clang
○ Bit of a neverending whack-a-mole game
○ Our team is developing a frontend which doesn’t suffer

from this problem 🤫

Questions? Thank you!

16

Try it out: https://gitlab.com/sourcedotdev/lpc2024

https://gitlab.com/sourcedotdev/lpc2024

