
1

CTFv4, the next generation
Nick Alcock <nick.alcock@oracle.com>

or, CTF == B++TF

2

What is CTF?
● Provides a table of types in a C program, emitted by GCC,

deduplicated by GNU ld, with read and write access provided
by libctf in binutils.

● This table is known as a dictionary or dict because it largely
contains definitions

● Also lets you map from ELF symbols to types
● Can represent ambiguously-defined (clashing) types.
● Useful for debugging, tracing, ABI analysis and reflection.
● The current version is CTFv3 (dating back to 2019).
● Spec: https://sourceware.org/binutils/docs/ctf-spec.html

3

Why?
● CTFv3 is pretty stable by now
● But so is BTF, and a lot of tools can manipulate

that.
● They are very similar!
● Making the two mutually compatible will save effort

for both sides
● This will be CTFv4: BTF, with a few extensions

4

Parents, children, conflictingness
Parent

Type A typedef int bar
Type B struct foo

Child

Type A typedef long bar

Child

Type A typedef int64_t bar
Type B struct foo

● CTF has a notion of conflicting types
● The deduplicator detects types with different definitions but the same name
● The least utilized types get moved into child dicts named after the

translation unit
● These are all stored in a single archive, which is deduplicated together.

● For the kernel, these are named after kernel modules instead
● Conflicting types within one module are stored but marked hidden

5

Invisible format differences
● The trickiest format differences are changes in the

distribution of type IDs and strings in child dicts
● Type IDs

– CTF: type IDs in children have their high bit on
– BTF: type IDs in children run continuously from the

parent
● Strings

– CTF: child dicts can only refer to strings in child strtabs
– BTF: strtabs are deduplicated against the parent

6

Invisible format differences
● Strtab improvement saves a lot of space (~20% after

compression)
● Type ID change has no real benefits but is more or less

harmless
● However, this makes the format more fragile: types and

strings can no longer be added to parents after children
are populated, and if you import children into the wrong
parent absolute disaster results.

● In practice this is harmless, and CTF archives make it
much less likely

7

More visible format differences:
headers

● CTF has a bunch of features useful for ELF (but
less so for the kernel) which we want to
preserve.

● The most important of these is typetabs
● This needs several sections in the CTF file

which are not in BTF: how to add this
compatibly?

8

Adding headers compatibly
● CTF header has extra members after

the BTF header
● Header entries are all offsets
● BTF tools almost fully support dicts

with larger hdr_len than
sizeof(btf_header) (only endian-
swapping doesn’t work)

● so CTF has the same header, with a
bigger hdr_len, and extra fields (which
no BTF tools will consult)

● If BTF adds more fields, we bump the
CTF format version and adapt our
header

btf_header

__u16 magic
__u8 version
__u8 flags
__u32 hdr_len
__u32 type_off
__u32 type_len
__u32 str_off
__u32 str_len

ctf_header

__u16 magic
__u8 version
__u8 flags
__u32 hdr_len
__u32 type_off
__u32 type_len
__u32 str_off
__u32 str_len
__u32 cu_name
__u32 cu_parent_name
__u32 cu_parent_ntypes
__u32 cu_parent_strtab_len
__u32 objt_off
__u32 objt_len
__u32 func_off
__u32 func_len
__u32 layout_off
__u32 layout_len

9

Smaller format differences
● The BTF type header differs from the CTFv3 one in three

major ways
● Fewer bits for the vlen (2^16 structure fields rather than

2^24)
● Shorter max type size (types > 2^32 bytes

unrepresentable
● No hidden bit (problematic for conflicting types in modules)

● Mostly these don’t matter for kernels, so a reasonable
decision for BTF.

● ... but we handle userspace too.

10

Smaller format differences
● We can compensate for all of these problems

without changing the btf_type_t
● We introduce two new type kinds (BTF allows

up to 32 and only 19 are in use: no shortage).
● These type kinds are a new sort of type kind, a

prefixed kind.

11

Prefixed kinds
struct btf_type

kind CTF_KIND_BIG
size n
vlen m

struct btf_type (in the vlen!)

kind BTF_KIND_STRUCT
size x
vlen y

● Prefixed kinds have a btf_type immediately followed
by another btf_type: the variable-length portion of
this type is another type header! (But both types are
one entity, with one type ID.)

● The ultimate type of the kind on the left is
BTF_KIND_STRUCT, but its size is obtained by (n
>> 32) | x, and its vlen by (m >> 16) | y.

● The BTF vlen is 16 bits, giving a total vlen of 32; the
BTF size is 32, giving a total size of 64. This is
bigger than CTFv3!

● Hidden types are handled via a
CTF_KIND_HIDDEN kind that just hides the type it
prefixes

12

Smaller additions
● CTFv3 implements slices, which change the encoding of

a type (e.g. shrinking a bitfield).
● CTFv3 supports mapping ELF symbols to their types

(including conflicting types found in child dicts).
● CTFv3 string offsets with their high bit on refer to an

external string table, usually an ELF dynstrtab.
● All these features are carried into CTFv4 unchanged (but

slices might in future be dropped: they have relatively
marginal benefit).

13

BTF improvements over CTF
● We can adopt a number of BTF improvements and

smaller changes into CTF unchanged:
– 64-bit enums
– data sections
– BTF-specific representation for variables and forwards

● Data sections and variables are encoded as if they
were types even though they’re not

● This is a bit ugly, but does not lead to loss of
expressiveness

14

libctf API changes
● What does all this churn mean for the libctf API?

Almost nothing!
● There is a new set of ctf_dict_set_flag() flags that

control writeout and let callers say “only emit BTF,
fail if CTF is called for” or “emit CTF always”
(passed by ld). If neither is passed we emit BTF if it
would lose no information, CTF otherwise

● We gain new functions to insert and look up the
contents of data sections and insert and follow
type and decl tags

15

libctf API changes
● Enums are... tricky, because the API currently treats their

size as ints: new API functions for enum64s will probably
be needed, if we don’t just bump the soname to change
the prototypes to int64_t (I’d rather not).

● The API changes are nonetheless essential, because we
eat our own dogfood: the deduplicator uses the public
API functions to populate deduplicated dictionaries

16

Deduplicator changes
● Again, almost none: the new type kinds are mostly trivial, like

existing ones or are types no other types can refer to
● There is one implication for existing BTF clients, though – the

deduplicator can emit forwards to anything, including types
that in C cannot be forwards (e.g. forwards to arrays): this is
a signal that “this type is conflicting, look in children for the
multiple definitions of it”: consumers must adapt if BTF
decides to allow conflicting types

● We might just add a flag to cause ctf_link to drop conflicting
types, and then consumers don’t need to worry about this or
CTF archives. (See my upcoming talk at LPC.)

17

Kernel-side changes
● The ultimate goal of all of this is to allow the kernel (and pahole) to

drop all their deduplicator and just use the toolchain’s!
● The CTF approach is to link each module using the normal userspace

approach, then have a separate program that calls the ctf_link API
used by ld to dedup all these modules and the core kernel together
into one big archive

● There’s no reason BTF can’t do the same thing, handing the result on
to pahole to do the further transformations it wants to do to it. There
are other possible approaches, but this one has the advantage that
more or less all the code already exists.

● The open question is whether the kernel people want any of this or
think it’s useless frippery. My opinion is obvious :)

18

Questions?
● What else would be helpful?
● What other things would people like?

– Better API functions?
– More speed?
– Free ice cream with every ld invocation?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

CTFv4, the next generation

Nick Alcock <nick.alcock@oracle.com>

or, CTF == B++TF

What is CTF?

		Provides a table of types in a C program, emitted by GCC, deduplicated by GNU ld, with read and write access provided by libctf in binutils.

		This table is known as a dictionary or dict because it largely contains definitions

		Also lets you map from ELF symbols to types

		Can represent ambiguously-defined (clashing) types.

		Useful for debugging, tracing, ABI analysis and reflection.

		The current version is CTFv3 (dating back to 2019).

		Spec: https://sourceware.org/binutils/docs/ctf-spec.html

Why?

		CTFv3 is pretty stable by now

		But so is BTF, and a lot of tools can manipulate that.

		They are very similar!

		Making the two mutually compatible will save effort for both sides

		This will be CTFv4: BTF, with a few extensions

Parents, children, conflictingness

		CTF has a notion of conflicting types

		The deduplicator detects types with different definitions but the same name

		The least utilized types get moved into child dicts named after the translation unit

		These are all stored in a single archive, which is deduplicated together.

		For the kernel, these are named after kernel modules instead

		Conflicting types within one module are stored but marked hidden

Invisible format differences

		The trickiest format differences are changes in the distribution of type IDs and strings in child dicts

		Type IDs

		CTF: type IDs in children have their high bit on

		BTF: type IDs in children run continuously from the parent

		Strings

		CTF: child dicts can only refer to strings in child strtabs

		BTF: strtabs are deduplicated against the parent

Invisible format differences

		Strtab improvement saves a lot of space (~20% after compression)

		Type ID change has no real benefits but is more or less harmless

		However, this makes the format more fragile: types and strings can no longer be added to parents after children are populated, and if you import children into the wrong parent absolute disaster results.

		In practice this is harmless, and CTF archives make it much less likely

More visible format differences: headers

		CTF has a bunch of features useful for ELF (but less so for the kernel) which we want to preserve.

		The most important of these is typetabs

		This needs several sections in the CTF file which are not in BTF: how to add this compatibly?

Adding headers compatibly

		CTF header has extra members after the BTF header

		Header entries are all offsets

		BTF tools almost fully support dicts with larger hdr_len than sizeof(btf_header) (only endian-swapping doesn’t work)

		so CTF has the same header, with a bigger hdr_len, and extra fields (which no BTF tools will consult)

		If BTF adds more fields, we bump the CTF format version and adapt our header

Smaller format differences

		The BTF type header differs from the CTFv3 one in three major ways

		Fewer bits for the vlen (2^16 structure fields rather than 2^24)

		Shorter max type size (types > 2^32 bytes unrepresentable

		No hidden bit (problematic for conflicting types in modules)

		Mostly these don’t matter for kernels, so a reasonable decision for BTF.

		... but we handle userspace too.

Smaller format differences

		We can compensate for all of these problems without changing the btf_type_t

		We introduce two new type kinds (BTF allows up to 32 and only 19 are in use: no shortage).

		These type kinds are a new sort of type kind, a prefixed kind.

Prefixed kinds

		Prefixed kinds have a btf_type immediately followed by another btf_type: the variable-length portion of this type is another type header! (But both types are one entity, with one type ID.)

		The ultimate type of the kind on the left is BTF_KIND_STRUCT, but its size is obtained by (n >> 32) | x, and its vlen by (m >> 16) | y.

		The BTF vlen is 16 bits, giving a total vlen of 32; the BTF size is 32, giving a total size of 64. This is bigger than CTFv3!

		Hidden types are handled via a CTF_KIND_HIDDEN kind that just hides the type it prefixes

Smaller additions

		CTFv3 implements slices, which change the encoding of a type (e.g. shrinking a bitfield).

		CTFv3 supports mapping ELF symbols to their types (including conflicting types found in child dicts).

		CTFv3 string offsets with their high bit on refer to an external string table, usually an ELF dynstrtab.

		All these features are carried into CTFv4 unchanged (but slices might in future be dropped: they have relatively marginal benefit).

BTF improvements over CTF

		We can adopt a number of BTF improvements and smaller changes into CTF unchanged:

		64-bit enums

		data sections

		BTF-specific representation for variables and forwards

		Data sections and variables are encoded as if they were types even though they’re not

		This is a bit ugly, but does not lead to loss of expressiveness

libctf API changes

		What does all this churn mean for the libctf API? Almost nothing!

		There is a new set of ctf_dict_set_flag() flags that control writeout and let callers say “only emit BTF, fail if CTF is called for” or “emit CTF always” (passed by ld). If neither is passed we emit BTF if it would lose no information, CTF otherwise

		We gain new functions to insert and look up the contents of data sections and insert and follow type and decl tags

libctf API changes

		Enums are... tricky, because the API currently treats their size as ints: new API functions for enum64s will probably be needed, if we don’t just bump the soname to change the prototypes to int64_t (I’d rather not).

		The API changes are nonetheless essential, because we eat our own dogfood: the deduplicator uses the public API functions to populate deduplicated dictionaries

Deduplicator changes

		Again, almost none: the new type kinds are mostly trivial, like existing ones or are types no other types can refer to

		There is one implication for existing BTF clients, though – the deduplicator can emit forwards to anything, including types that in C cannot be forwards (e.g. forwards to arrays): this is a signal that “this type is conflicting, look in children for the multiple definitions of it”: consumers must adapt if BTF decides to allow conflicting types

		We might just add a flag to cause ctf_link to drop conflicting types, and then consumers don’t need to worry about this or CTF archives. (See my upcoming talk at LPC.)

Kernel-side changes

		The ultimate goal of all of this is to allow the kernel (and pahole) to drop all their deduplicator and just use the toolchain’s!

		The CTF approach is to link each module using the normal userspace approach, then have a separate program that calls the ctf_link API used by ld to dedup all these modules and the core kernel together into one big archive

		There’s no reason BTF can’t do the same thing, handing the result on to pahole to do the further transformations it wants to do to it. There are other possible approaches, but this one has the advantage that more or less all the code already exists.

		The open question is whether the kernel people want any of this or think it’s useless frippery. My opinion is obvious :)

Questions?

		What else would be helpful?

		What other things would people like?

		Better API functions?

		More speed?

		Free ice cream with every ld invocation?

 struct btf_type

 kind
 CTF_KIND_BIG

 size
 n

 vlen
 m

 struct btf_type (in the vlen!)

 kind
 BTF_KIND_STRUCT

 size
 x

 vlen
 y

 btf_header

 __u16
 magic

 __u8
 version

 __u8
 flags

 __u32
 hdr_len

 __u32
 type_off

 __u32
 type_len

 __u32
 str_off

 __u32
 str_len

 ctf_header

 __u16
 magic

 __u8
 version

 __u8
 flags

 __u32
 hdr_len

 __u32
 type_off

 __u32
 type_len

 __u32
 str_off

 __u32
 str_len

 __u32
 cu_name

 __u32
 cu_parent_name

 __u32
 cu_parent_ntypes

 __u32
 cu_parent_strtab_len

 __u32
 objt_off

 __u32
 objt_len

 __u32
 func_off

 __u32
 func_len

 __u32
 layout_off

 __u32
 layout_len

 Parent

 Type A
 typedef int bar

 Type B
 struct foo

 Child

 Type A
 typedef long bar

 Child

 Type A
 typedef int64_t bar

 Type B
 struct foo

